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ABSTRACT 
The present paper deals with a new method to compute the Mittag-Leffler function 𝑬𝜶(−𝔃

𝜶) for arbitrary 

complex argument  𝓏 ∈ ℂ and parameter 𝛼 ∈ ℝ+. Such function is known to play a fundamental role in 

fractional differential equations with various applications in physics given the fact that Mittag-Leffler function 

interpolates smoothly between exponential and algebraic functional behaviour. The method is based on 

calculation of the inverse of the mapping 𝐼𝑑 + 𝛬𝐼𝛼 where Id, 𝐼𝛼are respectively the identity and Riemann-

Liouville integral operator of order. Numerical implementation of the present method is found to be fast and 

easy. In the other hand, its comparison with existing methods as the Pade algorithm and the integral 

representation shows good accuracy. Thus, the present method appears to be a useful alternative way to 

compute Mittag-Leffler function 𝑬𝜶(−𝔃
𝜶).Finally, an application to anomalous transport in porous media is 

carried out to illustrate the interest of the method. 

KEYWORDS: Algorithm, Mittag-Leffler function, fractional partial differential equation, anomalous 

transport. 

I. INTRODUCTION 

Recently, scientists have focused on the Mittag-Leffler function for several reasons. In particular, 

MittagLeffler functions are building blocks of fundamental solutions of many ordinary differential 

equations involving derivatives of non-integer order, thus extending the role of exponentials. Such 

equations arise in various domains of physics, including generalized fractional kinetic equations, 

diffusive transport and coupled systems [15], [16], [27] [19], [20],[21], [22]. It motivated addressing 

mathematical property of Mittag-Leffler functions [23], [24], [25], [26], [28], [29],.Mittag-Leffler 

functions also appear in the solution of boundary value problems with integro-differential equations of 

Volterra [18].The function of Mittag-Leffler is used in other domains, such as fluid flow, rheology, 

electrical networks, probability theory and statistical distribution. Furthermore, characteristics and 

applications of this function can be found in the following works [19], [20], [21], [22], [23], [24], 

[25], [26], [28], [29], [30]. In the present paper, we introduce and validate a new method to calculate 

Mittag-Leffler functions 𝑬𝜶(−𝔃
𝜶) for 𝜶 between 0 and 1 with 𝔃 been a complex number. The method 

is based on triangular matrix inversion at each step. With only the last elements of the matrix need to 

be re-actualized at each time steps. Hence, the method is fast and its generalization is easy. 

Comparisons with other existing methods show a good accuracy of our method. Note that a numerical 

evaluation of 𝑬𝜶,𝜷(−𝒙) is treated by J.W. hanneken and Al. in [33]. The paper is written in five parts. 

In next section we will detail the basis of the method. Comparison with other existing methods is 
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given in the section 3. The fourth section will be devoted to an application related to 𝑬𝜶(−𝔃
𝜶). We 

end the paper with some concluding remarks about the present work. 

II. DESCRIPTION OF THE CALCULATION METHOD 

2.1. Definition of generalized Mittag-Leffler function 

Function ez that plays an essential role in ordinary differential equations, was generalized by G.M. 

Mittag-Leffler in [1] and [2] also studied by A. Wimam [34], [35].This basic function that generalize 

the exponential can be defined as. 

𝐸𝛼(𝓏) = ∑
𝓏𝑘

Γ(1+𝛼𝑘)
∞
𝑘=0 𝛼 ∈ ℝ+, 𝒵 ∈ ℂ, (1) 

Where Γ() is the gamma function defined as 

Γ(𝓏) = ∫ 𝑡𝑧−1𝑒−𝑡𝑑𝑡

+∞

0

 

The function 𝐸𝛼(𝓏) satisfies ordinary differential equations: differently from that happens for = 1 . 

Two-parameter functions 𝐸𝛼,𝛽(𝓏) of the Mittag-Leffler type introduced by Agarwal [3], according to 

𝐸𝛼,𝛽(𝓏) = ∑
𝓏𝑘

Γ(𝛽+𝛼𝑘)
∞
𝑘=0  𝛼 ∈ ℝ+, 𝛽 ∈ ℝ, 𝓏 ∈ ℂ,  (2) 

The link between the 𝐸𝛼,𝛽(𝓏)(with 𝐸𝛼(𝓏) = 𝐸𝛼,1(𝓏)) and their derivatives are detailed in [46]. 

The operator (𝐼𝑑 + Λ𝐼𝛼)−1 is present in the expression which calculates the density of mobiles 

particles and the flux in fractal MIM model (f-MIM). 

This model was used to represent the anomalous transport. As we shall see in the following that this 

operator applied to the function 1 is not other than 𝐸𝛼(−𝑧
𝛼). 

Analytic solutions to fractional-order differential equations are often expressed in terms of the Mittag-

Leffler function, and so we need to know the best scheme that computes this special function, which 

is the topic of this section. 

2.2. Method to estimate 𝐸𝛼(−𝑧
𝛼) 

-Riemann-Liouville fractional integral 

In the classical calculus of Newton and Leibniz, Cauchy reduced the calculation of an n-flod 

integration of the function 𝑓(𝑥) into a single convolution integral possessing an Abel (power law) 

kernel, 

𝐼𝑛 = ∫ ∫ …∫ 𝑓(𝑥0)𝑑𝑥0

𝑥1

0

…𝑑𝑥𝑛−2𝑑𝑥𝑛−1

𝑥𝑛−1

0

𝑥

0

 

=
1

(𝑛−1)!
∫

1

(𝑥−𝑥′)1−𝑛
𝑓(𝑥′)𝑑𝑥′ 𝑛 ∈ ℕ, 𝑥 ∈ ℝ+

𝑥

0
, (3) 

 

Where 𝐼𝑛 is the n-flod integral operator with 𝐼0𝑓(𝑥) = 𝑓(𝑥) . Liouville and Riemann analytically 

continued Cauchy’s result, replacing the discrete factorial (𝑛 − 1)! with Euler’s continuous gamma 

function Γ(𝑛), noting that (𝑛 − 1)! = 𝛼(𝑛), 

𝐼𝛼𝑓(𝑥) =
1

Γ(𝛼)
∫

1

(𝑥−𝑥′)1−𝛼
𝑓(𝑥′)𝑑𝑥′𝛼, 𝑥 ∈ ℝ+,

𝑥

0
  (4) 

Where 𝐼𝛼is the Riemann-Liouville integral operator of order 𝛼  , which commutes (i.e 𝐼𝛼𝐼𝛽𝑓(𝑥) =
𝐼𝛽𝐼𝛼𝑓(𝑥) = 𝐼𝛼+𝛽𝑓(𝑥), ∀𝛼, 𝛽 ∈ ℝ+) 

A brief history of the development of fractional calculus can be found in Ross [49] and Miller and 

Ross (C h a p t e r 1) [50]. A survey of many emerging applications of the fractional calculus in areas 

of science and engineering can be found in the recent text by Podlubny (Chapter 10) [51]. 

 

-Inverting 𝐼𝑑 + 𝛬𝐼𝛼 

The Mittag-Leffler function 𝐸𝛼(−Λ𝑡
𝛼) can also be obtained by integring a fractional operator. We see 

it for real values of Λ and 𝑡 and pass to complex arguments upon rescaling. A numerical 

approximation of 𝐸𝛼(−Λ𝑡
𝛼)will than be deduced. 
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A look at the Laplace transform 
1

𝜆(1+Λ𝜆−𝛼)
 of 𝐸𝛼(−Λ𝑡

𝛼) suggest doing 𝐸𝛼(−Λ𝑡
𝛼) = (𝐼𝑑 +

Λ𝐼0
𝛼)−1 𝑓𝑜𝑟  𝑡 ∈ ℝ+, provided the inverse makes sense. 

In fact, its exist and can be expanded in Neumann series, in spaces where fractional integrals are 

small, whatever the value of _ that even can be complex. 

Such spaces are, for instance, the 𝑋𝑥,𝑇 = {𝑓/‖𝑒−𝑥𝑓‖𝐿𝑃[0,𝑇] < ∞}, with 𝑒−𝑥(𝑡) = 𝑒
−𝑥𝑡. 

The lemma 3 of [45] states that ‖𝑒−𝑥𝐼0
𝛼, +𝑓‖𝐿𝑃[0,𝑇] ≤ 𝑋

−𝛼‖𝑒−𝑥𝑓‖𝐿𝑃[0,𝑇] for every 𝑓 in 𝑋𝑥,𝑇 

For each 𝑇 > 0 and each complex number Λ choosing𝑋𝑛 > 0 such that |Λ|𝑋−𝛼 < 1 yelds that the 

Neumann serie ∑ (−Λ𝐼0,+
𝛼 )𝑛𝑛≥0  converges and we have: 

𝐸𝛼(−Λ𝑡
𝛼) = (𝐼𝑑 + Λ𝐼0,+

𝛼 )−1  

For 𝑡 > 0 and Λ 𝑖𝑛 ℂ 

III. COMPARATIVE STUDY 

3.1. Integral representations of the Mittag-Leffler function 

Integral representations play a prominent role in the analysis of entire functions. For the Mittag-

Leffler function such representations in form of an improper integral along the Hankel loop have been 

treated in the case  𝛽 =  1 and in the general case with arbitrary 𝛽. 

They use contours 𝛼(𝜌; 𝜑) of the complex plan indexed by  𝜌 >  0 and0 < 𝜑′ ≤ 𝜋, 𝛼(𝜌;𝜑) = 𝑆−𝜑 ∪

𝐶𝜑(0, 𝜌)⋃𝑆𝜑consisting three parts representedon figure (3.1). Elements 𝑆±𝜑are defined by• arrays 

𝑆±𝜑 = {𝜆 arg 𝜆⁄ = ±𝜑, |𝜆| ≥ 𝜌}; 

 

Figure 1: The contourα(ρ; φ)[47] 

circular arcs 𝐶𝜑(0: 𝜌) are defined by 𝐶𝜑(0: 𝜌)  =  {−𝜑 ≤  𝑎𝑟𝑔𝜆 ≤  𝜑}ofcircumference. 

In the general case 0 < 𝜑 < 𝜋, the complex plane is divided into two partsby 𝛼(𝜌;𝜑)domain 

𝐺(−)(𝜌; 𝜑) is at the left of the contour, while domain𝐺(+)(𝜌; 𝜑) stays on his right. 

For  𝜑 =  𝜋 the contour 𝛼(𝜌;𝜑)is composed of the circle |𝜆|  = 𝜌and −∞ < 𝜆 ≤ −𝜑. In this case, 

domain 𝐺(−)(𝜌; 𝜑) becomes a disk of radius |𝜆|  < 𝜌,while 𝐺(+)(𝜌; 𝜑) becomes the area {𝜆 ∶
 |𝑎𝑟𝑔𝜆|  <  𝜋, |𝜆|  > 𝜌}. let0 <  𝛼 <  2, 𝛽_ an arbitrary number and ' a positive number such that: 

 
𝛼𝜋

2
< 𝜑 ≤ 𝑚𝑖𝑛{𝜋, 𝛼𝜋}  (5) 

 

So we have the integral representation of the Mittag-Leffler function: 

 

𝐸𝛼,𝛽(𝓏) =
1

2𝑖𝜋𝛼
∫

𝑒𝜆
1 𝛼⁄

𝜆(1−𝛽) 𝛼⁄

𝜆−𝓏
𝑑𝜆 , 𝓏 ∈  𝐺(−)(𝜌; 𝜑)

𝛼(𝜌;𝜑)
  (6) 
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and 

 

𝐸𝛼,𝛽(𝓏) =
𝓏(1−𝛽) 𝛼⁄ 𝑒𝓏

1 𝛼⁄

𝛼

1

2𝑖𝜋𝛼
∫

𝑒𝜆
1 𝛼⁄

𝜆(1−𝛽)/𝛼

𝜆−𝓏
𝑑𝜆, 𝓏 ∈ 𝐺(+)(𝜌; 𝜑)

𝛼(𝜌;𝜑)
. (7) 

 

If 𝛽 is a real number, then the equations (6) and (7) can be written in forms more appropriate to the 

numerical approach. In particular, if 0 < 𝛼 ≤  1, 𝛽 ∈ ℝ, |arg 𝜆| > 𝛼𝜋, 𝓏 ≠ 0, then: 

𝐸𝛼,𝛽(𝓏) = ∫ 𝐾(𝛼, 𝛽, 𝜒, 𝓏)𝑑𝜒
∞

𝜌
+ ∫ 𝑃(𝛼, 𝛽, 𝜑, 𝓏)𝑑𝜑

𝛼𝜋

−𝛼𝜋
, 𝜌 > 0  (8) 

 

𝐸𝛼,𝛽(𝓏) = ∫ 𝐾(𝛼, 𝛽, 𝜒, 𝓏)𝑑𝜒
∞

𝜌
, 𝑖𝑓  𝛽 < 1 + 𝛼  (9) 

 

𝐸𝛼,𝛽(𝓏) = −
1

𝓏
−
sin(𝛼𝜋)

𝛼𝜋
∫

𝑒−𝜒
1 𝛼⁄

𝜒2−2𝜒𝓏 cos(𝛼𝜋)+𝓏2
 𝑑𝜒

∞

𝜌
, 𝑖𝑓 𝛽 = 1 + 𝛼  (10) 

 

in which: 

 

 

𝐾(𝛼, 𝛽, 𝜒, 𝓏) =
𝜒(1−𝛽) 𝛼⁄ 𝑒−𝜒

1 𝛼⁄

𝛼𝜋

𝜒 sin[𝜋(1 − 𝛽)] − 𝓏 sin[𝜋(1 − 𝛽) + 𝛼)]

𝜒2 − 2𝜒𝓏 cos(𝛼𝜋) + 𝓏2
 

 

𝑃(𝛼, 𝛽, 𝜑, 𝓏) =
𝜌1+(1−𝛽) 𝛼⁄

2𝛼𝜋

𝑒𝜌
1 𝛼⁄ cos(1 𝛼⁄ )[cos(𝜔) + 𝑖 sin𝜔]

𝜌𝑒
𝑖𝜑
− 𝓏

 

 

𝜔 = 𝜌1 𝛼⁄ sin(𝜑 𝛼⁄ ) + 𝜑[1 + (1 − 𝛽) 𝛼⁄ ] 
 

Using this integral representation in (6) and (7), it is easier to get an asymptotic extension of the 

Mittag-Leffler function in the complex plane [48]. Let𝛼 <  2, 𝛽 an arbitrary number and 𝜑satisfies the 

condition selected in (5). 

Then, for all 𝑝 ∈  ℕ  𝑎𝑛𝑑  |𝑧|  →  ∞: 
1. if |𝑎𝑟𝑔𝑧|  ≤ 𝜑 , 

 

𝐸𝛼,𝛽(𝓏) =
𝓏(1−𝛽) 𝛼⁄ 𝑒𝓏

1 𝛼⁄

𝛼
− ∑

𝓏−𝑘

Γ(𝛽−𝛼𝑘)

𝑝
𝑘=1 + 𝑂(|𝓏|−1−𝑝) (11) 

2. if 𝜑 ≤  |𝑎𝑟𝑔𝑧|  ≤ 𝜋, 

 

𝐸𝛼,𝛽(𝓏) = −∑
𝓏−𝑘

Γ(𝛽−𝛼𝑘)

𝑝
𝑘=1 +𝑂(|𝓏|−1−𝑝) (12) 

Table 1: Table showing the difference between the three approaches where f, g, h represent respectively the 

Padé algorithm, the inverse of the mappy (Id − Iα) and the integral formulation 

 
 

3.2. The Pade algorithm for Mittag-Leffler function 

The Pade algorithm is start from the series (2) to estimate the Mittag-Leffler functions [9].This 

method presents a scheme for fast computations of: 

𝐸𝛼,1(−𝑥
𝛼), 0 < 𝛼 < , 𝑥 ∈ ℝ+ 
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It uses, equation (2), on interval 0 <  𝑥 <  0.1. Instead it uses asymptotic series, equation (12), is for 

𝑥 >  15. Pade approximations (or rational polynomials) 

are used for 0.1 <  𝑥 <  15, according to: 

𝐸𝛼,1(−𝑥
𝛼) ≈

{
 
 

 
 ∑

(−𝑥)𝛼𝑘

Γ(1+𝛼𝑘)

4
𝑘=0 , 0 < 𝑥 < 0.1

𝑎0+𝑎1𝑥+𝑎2𝑥
2

1+𝑏1𝑥+𝑏2𝑥2+𝑏3𝑥3
, 0.1 < 𝑥 < 15

∑
(−𝑥)−𝛼𝑘

Γ(1−𝛼𝑘)

4
𝑘=0 , 𝑥 ≥ 15,

  (13) 

where coefficients 𝑎0, 𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑏3are listed in Table 2 of [14] for values of 𝛼between 0.01 et 

0.99. 

3.3. Comparison of the methods 

In this section we present the results obtained on the different methods that we have used to 

calculate𝐸1−𝛼(−𝑥
1−𝛼) ,with 0 < 𝛼 <  1. The table1 show the differences between the three 

approaches calculated within theeuclideannorm . 

In the case where 𝛼 =  0, 5 ,the three methods coincide perfectly even if wesee a small shift in the 

curve obtained by the integral formulation (figure(3)). 

But in cases where 𝛼 <  0, 5 (ℎ𝑒𝑟𝑒 𝛼 =  0, 25 𝑎𝑛𝑑 𝛼 =  0, 45 (figure2), Thetable above shows that 

the approach obtained by the integral method differsfrom the results obtained with other two methods, 

but this difference is very obvious when the value of 𝛼increase down, in our case ,we can see very 

clearly when 𝛼 =  0.25. 

However, when the value of 𝛼close 1, we see that the curve obtained by themethod of Pad deviates 

from the curve obtained by the integral formulationand that calculated by the Neumann series, this 

differences increases with the value of 𝛼 (figure 4). We also note that the curves obtained by the 

Neumannseries and the integral formulation coincides. 

Figure 2: Eα_(−x
α) with different value of α <  0.5 





International Journal of Advances in Engineering & Technology, Mar. 2014. 

©IJAET  ISSN: 22311963 

222 Vol. 7, Issue 1, pp. 217-225 
 

Figure 3: Eα_(−x
α) with different value of α close 0.5 

We can conclude that compared to the other two approaches, the computation of the Mittag-Leffler 

function by inverting the mappy (𝐼𝑑 − 𝐼𝛼) ismore stable for all value of 𝛼between 0 to 1. 

 



Figure 4:Eα_(−x
α) with different value of α close 1 

IV. APPLICATION IN THE CASE OF ANOMALOUS TRANSPORT 

The process of dispersion of solutes in porous media may not be follow theusual laws of diffusion, 

especially in unsaturated regime. As an example, data from simple laboratory column filled of 

unsaturated (though not especially heterogeneous) porous media, show a breakthrough curves (BTC) 

with a heavy-tailed [4],[5],[8]. 

In particular, the long tails a behavior characteristics in the large time of the BTC follows a power law 

decay of time, reflecting some property of the medium to retain long time abnormally a fraction of the 

solute. This characteristic constitutes a memory effect that is beyond the scope of traditional models 

of diffusion based on the properties of Markovian in small scale. 

In roughly the power law distribution of waiting times led to the use of the time fractional derivative 

in the diffusion equation [12]. 

4.1. The microscopic scale model 

On the scale of fluid particles, the model where we use is described by a random walk. This is true for 

fluid particles and the solute particles. For a random walk, the idea to produce effects of stagnation is 

to impose of stopping times that can be drawn randomly. It is therefore to make a distinction between 

the time for which the walker makes a motion (operational time)and immobility time that could be 

abnormally large [42]. For the fractal MIM model, the evolution of the position of a particle of the 

random walk is given by: 

{
𝑥𝑛+1 = 𝑥𝑛 + 𝑣𝜏 + √2𝐷𝜏𝑁𝑛

𝑡𝑛+1 = 𝑡𝑛 + 𝜏 + 𝜏
1 𝛼⁄ 𝑊𝑛

 (14) 

The 𝑁𝑛 represent a Gaussian random variables independent and identicallydistributed, 

the𝑊𝑛 forming a sequence of random variables with positivevalue, according to a stable Levy law 

[43] of exponent 𝛼 between 0 and 1,and positive scale factor Λ. This means that the asymptotic 

behavior of the density of 𝑤𝑛 𝑖𝑠 
Λ𝑡−𝛼−1

|Γ(−α)|
 . The parameters 𝑣, 𝜏and D are respectively avelocity of 

advection, the time step of the walk and the diffusion coefficientof the medium. 

If  𝜏 →  0, the random walk described by equation (14) converges in law [42]to a stochastic process 

𝑥(𝑡) given by: 

𝑥(𝑡)  =  𝑥0  +  𝑣𝑍(𝑡)  + √2𝐷𝐵(𝑍(𝑡))  (15) 

For solute particles in a tracer experiment, 𝑥0 represents the position wherethey are injected, but for 

the fluid particles, x0 is a random variable uniformlydistributed. Moreover B is the standard Brownian 

motion and 𝑍(𝑡)is a stochastic process giving the operational time of the random walk. Theproperties 

of the process Z are determined by the parameters Λ 𝑎𝑛𝑑 𝛼definingthe probability distribution of Wn. 
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They have been studied in [42]. The relation (15) shows that the model is a time subordinated 

Brownian motion (physical time has been replaced by the operational time 𝑍(𝑡)). 

4.2. Macroscopic version 

Through a procedure of transition to the macroscopic limit, the fractal MIM model is given by the 

following differential equation [10]: 

𝜕𝑡𝑃 = 𝜕𝑥[𝜕𝑥𝐷(𝐼𝑑 + Λ𝐼0,+
1−𝛼)

−1
𝑃 − 𝑣(𝐼𝑑 + Λ𝐼0,+

1−𝛼)
−1
𝑃]  (16) 

where𝐼0,+
1−𝛼the fractional integral of order 1 − 𝛼, 𝐼𝑑 the identity andΛtherate of stationary particles. 

Note that here (𝐼𝑑 + Λ𝐼0,+
1−𝛼)−1𝑃(𝑥, 𝑡) representsthe density of the mobile phase of the solute at 

position 𝑥 in time 𝑡. Thisequation describes correctly the BTC evolving according to a power 

law[5],[31], because its solution 𝑃(𝑥, 𝑡) decreases such as 𝑡−𝛼at large value of𝑡. This behavior is 

incompatible with the classic MIM version [7], whichcorresponds to the case𝛼 =  1, and is equivalent 

to the advection dispersionequation (ADE) which represents the dispersion in a homogeneous 

medium. 

To solve this equation is equivalent to invert the operator(𝐼𝑑 + Λ𝐼0,+
1−𝛼) 

Indeed, the equation (16) is identical to: 

𝜕𝑡𝑃(𝑥, 𝑡) = −∇𝐹(𝑥, 𝑡) (17) 

where F(x, t) represents the propagation flux of the solute at position at time t defined by [10]. 

𝐹(𝑥, 𝑡) = −𝐷∇(𝐼𝑑 + Λ𝐼0,+
1−𝛼)

−1
𝑃(𝑥, 𝑡) + 𝑣(𝐼𝑑 + Λ𝐼0,+

1−𝛼)
−1
𝑃(𝑥, 𝑡) (18) 

It is also interesting to note that the solution (16) presents an asymptotic decay in power law of time 

similar to observations reported in experiments in unsaturated porous media [11][13]. 

V. CONCLUSION 

In this work, different numerical methods were used to compute 𝐸1−𝛼,1(−𝑥
1−𝛼).A comparative study 

of results are carried. We notice a good coincidence of Pad method and the inversion(𝐼𝑑 + 𝐼0,+
1−𝛼)when 

𝛼 <  0.5, through against when 𝛼 <  0.5 and even close to 1, the methodthat uses the integral 

formulation and inversion of the operator (𝐼𝑑 + 𝐼0,+
1−𝛼)coincide perfectly. Note that greater the value 

of 𝛼 approach 1, the Pad method differs from the other two methods. Note that the difference between 

the three methods is not very significant. 

 However, even if the Pad algorithm is fast Pad when the value of 𝑥 is between 0.1 and 15, the method 

that inverse the operator (𝐼𝑑 + 𝐼0,+
1−𝛼)remains fastest at the execution of thecomputation. 
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