ANALYTICAL VIBRATING SOLUTIONS OF THE NEW DE-SIGNED CAR WITH THE COMPARISONS

Khashayar Teimoori ^{‡1*}, Muhammad Hassani ^{2*}, Milad Khorami ^{3*}, Salar Mirzaei ⁴, Ali Sahebi ⁵

1,2,3,4 Department of Mechanical and Aerospace Engineering, Science and Research Branch, Azad University, Tehran, Iran

*I*Head of Mathematics and Nonlinear Sciences Department, BackstretchTM, Tehran, Iran

2*Head of Industrial Designing Department, BackstretchTM, Tehran, Iran

3*Head of Artificial Intelligence Department, BackstretchTM, Tehran, Iran

4*Head of Programming Department, BackstretchTM, P.O. Box 14185- 488 Tehran, Iran

5President of BackstretchTM, P.O. Box 14185- 488 Tehran, Iran

ABSTRACT

A very latest designed BMW focusing on the following features; a new body shape, the body shape analysis, a particular chassis design for the designed car, the analysis of installed chassis into the car body, the regarding and relevant calculations with reference to the resulted diagrams, the accurate consequences of the calculations and finally the analysis of the resulted calculations.

KEYWORDS: Damper, Chassis, Lagrange's Equations, Wheels & Mesh body

I. Introduction

The presenting article involves a designed BMW automobile including a designed particularly specific chassis. The assumed as well as considered issue in the field of mechanical vibration theories can help in order to create a defined and distributed reaction to both the surroundings and chassis. [1] The sketched chassis includes the springs and the dampers to rectify both the estimated strokes to the engine and the chassis. This will help the approximately focused strokes into the bumper or engine converted to a distributive energy over the whole surroundings and compartments of automobile. The condition of the pre-stroked forces at both front and rare section of chassis as well as the function of the dampers including the installed spring in the design are stated by the charts and analytical solutions. The Lagrange's vibration equations of the design system were expressed. Having solved the calculated equations and achieving the b factors, the efficiency of the strokes to the front and rare of the car body and the repealing of the strokes caused by the dampers and the springs will be argued. [2] The major issue here is the rate of the efficiency and damping of the stroked forces to the applied system on the car body and the returning function of the absorbed forces on the body which therefore the strokes and the system efficiency under this circumstance is superiorly illustrated in the scheme by an undisputed superior rate. There is a flowchart consists of the designing process, the designing analysis, and the former performed process to the finalized output process which illustrated on Figure 1.

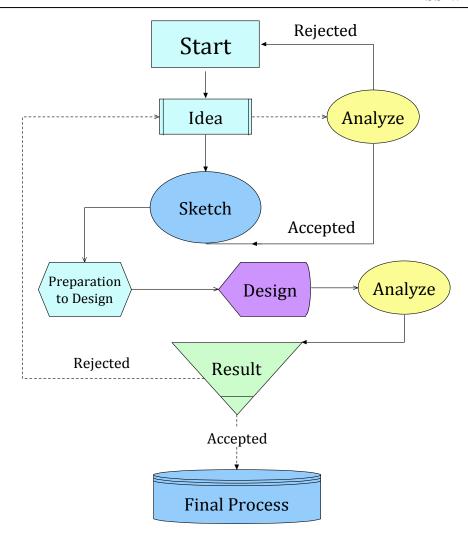


Figure 1. The schematic flowchart of the design processing with the details of portions

The automobile whole body was basically designed from BMW designs (with the combination of I8 concept and coupe 6 Series) to finally create a make accurately between the mentioned makes by two applications such as; 3D MAX and SOLID WORKS. [3] Besides a new particular and suitable designed chassis and fit in the front of the car which the detailed information is illustrated on Figure 2 accordingly.

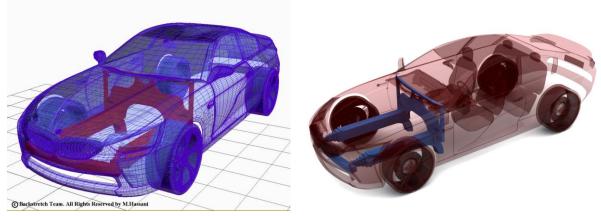


Figure 2. (a) The illustrated design on the meshed body and the chassis (b) The demonstration of the whole contained chassis including the details

M.Hassani - Department of Industrial Designing, BackstretchTM ©

The SOLID WORKS where applied due to the designing for the mentioned chassis and the 3D MAX applied to design of the body shape. In order to demonstrate how the body structure at the front in the condition of brunt forces is changeably transitional is figured and illustrated on Figure 2 by the meshed lines right after performing the brunt forces to transit toward to the front.

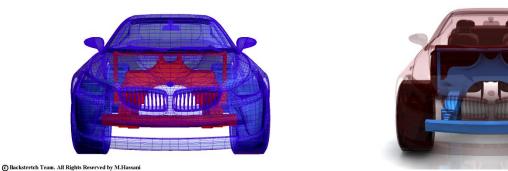


Figure 3. Illustration of the designed body in accord with the designed chassis [3] M.Hassani - Department of Industrial Designing, BackstretchTM \odot

The horizontal vibration strokes are technically limited and distributed to the car sides and rare part to excessively diminish the proportion of transited vibration strokes. It is noticeable that the similar mechanical design is concerned to the chassis at the rare part of the automobile which is found on Figure 3. The calculations as well as vibration equations have accurately and analytically resulted in following sections on the article.

II. CAR SUSPENSION AND STRUCTURE MODEL II.1 MATHEMATICAL FORMULATION

A quarter car model used in Figure 4 is used to define a new suspension control law;

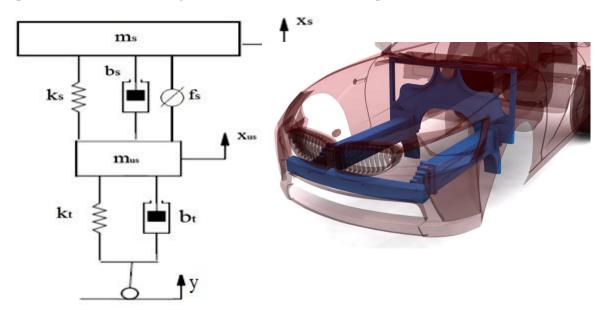
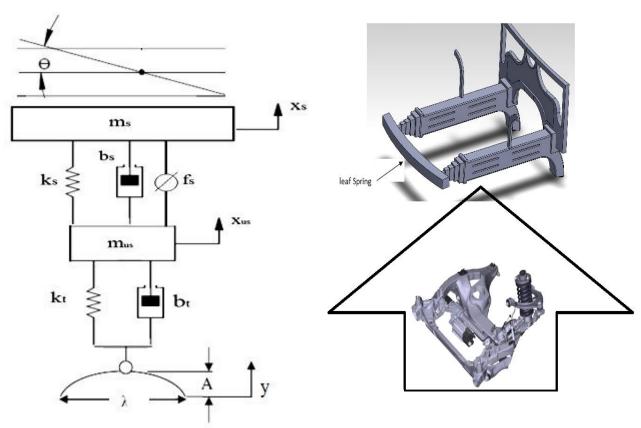


Figure 4. (a) Active suspension system law (b) Whole perspective of the designed car including the proposed chassis

The sprung mass m_s represents the car chassis, while the unsprung mass m_{us} represents the wheel assembly. The spring, K_s , and damper, b_s , represent a passive spring and shock absorber that are placed between the car body and the wheel assembly, while the spring K_t and the damper b_t serves to model the compressibility of the pneumatic tire. The variables X_s , X_{us} and r are the car body ravel,

and the road disturbance, respectively. The force f_s , in the unit of KN, applied between the sprung and unsprung masses, is controlled by feedback and represents the active component of the suspension system. If the dynamics of the actuator be ignored and assume that the control signal be the force f_s ,

also defined $x_1 = x_s$, $x_2 = x_s$, $x_3 = x_{us}$ and $x_4 = x_{us}$, then the following is then the state-space description of the quarter car dynamics.


$$x_2 = -\frac{1}{m_s} \left[k_s (x_1 - x_3) + b_s (x_2 - x_4) - f_s \right]$$
 (2)

$$x_3 = x_4 \tag{3}$$

$$x_{4} = \frac{1}{m_{us}} \left[k_{s}(x_{1} - x_{3}) + b_{s}(x_{2} - x_{4}) + b_{t}(x_{4} - y) - f_{s} \right]$$
(4)

II.2 EQUATIONS OF MOTION

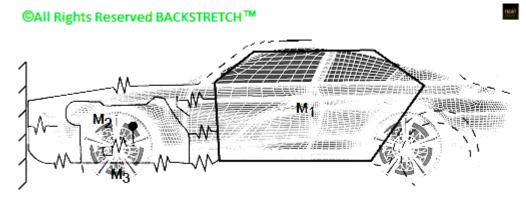

The applied quotations in this research consist of Lagrange's equations as well as other nonlinear calculations so as to introduce the applied and designed system. [4] The generalized nates x(t) and $\theta(t)$ are applied to describe the system vibration. The system used to define and analyze is shown by Figure 5.

Figure 5. (a) Schematic system motion of the tire in the ramp situation **(b)** Chassis and the information of the portions

It is noticeable that the car elastic model illustrates the dampers and springs system which had assisted to write dynamical equation process.

As it is fairly shown and considerable, the assumed resulted equations have been precisely calculated. Also the elastic dynamical model of the body is represented on Figure 6.

Figure 6. Elastic model of the whole body structure Kh.Teimoori - Department of Behavior Analysis, $Backstretch^{TM}$ ©

 M_1 represents the whole body mass, $M_2 = M_s$ and $M_3 = M_{us}$. Also the simulation of the elastic model of body which consists of the dampers, springs, engine system and the body mass are illustrated on Figure 7. The considering issue here is the sequence of the springs and dampers arrangement in the suspension system complex.

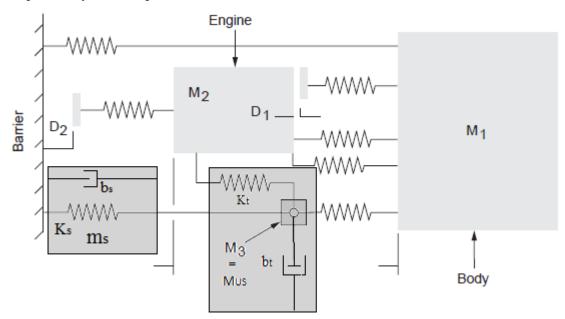


Figure 7. Simulation of the Elastic Model of Body [7]

As it is imagined on Figure 7 the whole complex works accurately when the active and passive results of the vibration equations are to be bilaterally equal. In order to reach the mentioned issue, it is required to solve and analyze the vibration equations into the system.

II.3 MATHEMATICAL CALCULATIONS

The kinetic energy according to the Euler Equation is as the following:

$$T = -\frac{1}{2} m_{us} x_{us}^{-2} - \frac{1}{2} m_{s} x_{s}^{-2} + \frac{1}{2} J \dot{\theta}^{2}$$
 (5)

The potential energy demonstrated in Equation 2 as:

$$U = \frac{1}{2} \mathbf{k}_{t} (y + x_{us} + l\theta)^{2} + \frac{1}{2} k_{s} (y + x_{s} + l\theta)^{2}$$
(6)

Rayleigh's dissipation function demonstrates viscous dissipation in the dampers is:

$$Q = \frac{1}{2}b_{t}(y + x_{us} + l\theta)^{2} + \frac{1}{2}b_{s}(y + x_{s} + l\theta)^{2}$$
 (7)

The Lagrange notation L = T - U evaluated by (1) and (2), and the both including with (3) substituted in (4) and (5) have the equations of the automobile motion obtained. [6]

$$\frac{d}{dt} \left(\frac{\partial L}{\partial x} \right) - \frac{\partial L}{\partial x} = \frac{\partial Q}{\partial x}$$
 (8)

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}} \right) - \frac{\partial L}{\partial \dot{\theta}} = \frac{\partial Q}{\partial \dot{\theta}}$$
 (9)

The application of Equations 4 and 5 yields:

$$(m_{us} + m_s) \dot{x} + (b_t - b_s) \dot{x} + (lb_s + lb_t) \dot{\theta} + (k_t + k_s) x + (lk_s + lk_t) \theta = k_t y + k_s y + b_t \dot{y} + b_s \dot{y}$$
(10)

$$J \ddot{\theta} + (b_{c}l - b_{c}l)\dot{x} + (l^{2}b_{c} + l^{2}b_{c})\dot{\theta} + (k_{c}l_{2} - k_{d}l_{1})x + (l^{2}k_{c} + l^{2}k_{c})\theta = k_{c}ly + k_{c}ly - b_{c}l\dot{y} + b_{c}l\dot{y}$$
(11)

The equation of motion can also be shown in matrix form as:

(12)

$$\begin{bmatrix} m_{us} + m_s & 0 \\ 0 & J \end{bmatrix} \begin{bmatrix} \ddot{x}(t) \\ \ddot{\theta}(t) \end{bmatrix} + \begin{bmatrix} b_t + b_s & lb_s - lb_t \\ lb_s - lb_t & l^2b_s - l^2b_t \end{bmatrix} \begin{bmatrix} \dot{x}(t) \\ \dot{\theta}(t) \end{bmatrix} + \begin{bmatrix} k_t + k_s & k_s l - k_t l \\ k_s l - k_t l & l^2k_t + l^2k_s \end{bmatrix} \begin{bmatrix} x(t) \\ \theta(t) \end{bmatrix} = \begin{bmatrix} k_t & k_s \\ -k_t l & k_s l \end{bmatrix} \begin{bmatrix} y_t \\ y_s \end{bmatrix} + \begin{bmatrix} b_t & b_s \\ -b_t l & b_s l \end{bmatrix} \begin{bmatrix} \dot{y}_t \\ \dot{y}_s \end{bmatrix}$$

Having solved the equation 12 by either the accessible Mathematics Software or Cayley Hamilton theorem which was applied to the calculation above, the final calculation resulted in b coefficients in the system which its analysis illustrated on Figure 8. The arrangement of the calculation operations is figured on chart 1.

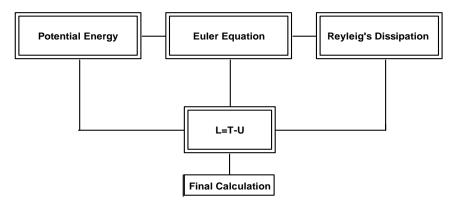
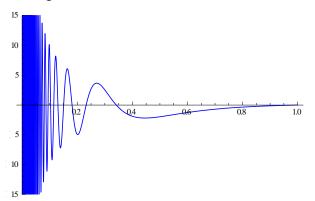
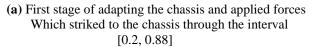
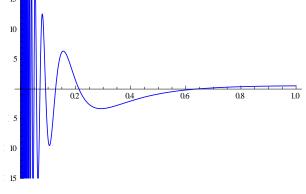
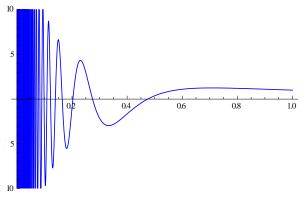
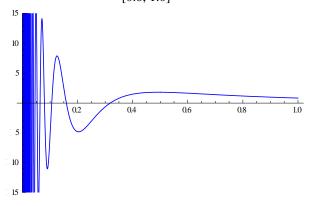
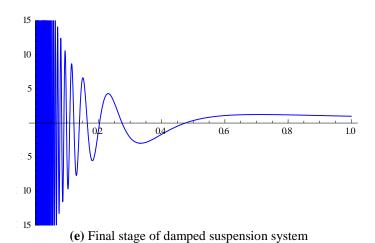





Chart 1. Arrangement calculation operations


Having solved the matrix above, the bs coefficients are calculated and demonstrated as the followings:




(b) Second stage with the maximum impact on the chassis through the interval of [0.6, 1.0]

(c) Third stage which is related to the reversing of the applied Forces and the functional time of impact started from 0.43 sec

(d) Final adapting process and the ultimate impact of the applied tension

Figure 8. The state of dampers adaptation in the brunt forces condition through the interval of [0, 0.1] second sequentially illustrated

In addition to the obtained b coefficients, which are related to the system motion, are derived from Lagrange's equations which illustrate the springs and dampers vibration of the car suspension system. Besides all the designed dampers and springs in this research attentively calculated as the b coefficients similarly, this research sequentially as well as accurately proves the calculations on dampers and springs installed right before the front and rare bumpers are connected to chassis, remarkably

©IJAET ISSN: 2231-1963

resulted in similar coefficients, as well. As the consequence of the argumentation above, the purpose of

the attained diagrams illustrated on Figure 8 are technically stated each situation process of the suspension system actions.

III. CONCLUSIONS

The main idea of the design is exclusively inspired and then innovated from the characteristics of the mechanical behaviors on concepts. One of the cases through thousands of the pursued researches is the car and the actions of the suspension system in the situation of the brunt forces acted by the external and accidental obligations. Accordingly, as the suspension system is noticeably taken granted for designing which practically impacts mainly the dissipation of the stroked forces on the car body. The final process of installing chassis on the engine and the adjusted comparisons of the engine dimensions with reference to the designed chassis in this study are illustrated on Figure 9.

(a) The primary installed chassis

C) Backstreich Team. All Rights Reserved by M.Hassani

(c) The completed design on car body and chassis

(b) The designed chassis including the detailed engine Information

(d) The whole perspective of the body

Figure 9. Process of adjustable comparisons of the engine dimensions with reference to the designed chassis

REFERENCES

- [1]. SFE-Concept. http://sfe1.extern.tu-berlin.de/concept/concept.html, SFE, GmbH, Voltastrasse 5, D-13355, Berlin, Germany
- [2]. Ullman, DG., The Mechanical Design Process, 2d edt, McGraw-Hill, 1997
- [3]. Khashayar Teimoori, M. H. (2012). "Special Dynamical Solutions of the Wheels of New Designed Car Body." International Journal of Advances in Engineering & Technology 5(1): 206-217
- [4]. Inman, Daniel J., "Engineering Vibrations, 2/E", Prentice Hall, 2001
- [5]. L. Morello, F. D'Aprile, Associative CAD in Vehicle Development through Simultaneous Engineering, ATA, Firenze, Febbraio 1997
- [6]. A. Mohammadzadeh, S. Heidar, 2006-940: Analysis And Design Of Vehicle Suspension System Using Matlab And Simulink, Grand Valley State University
- [7]. Kamal, M. M., "Analysis and Simulation of Vehicle to Barrier Impact," SAE Paper No. 700414, 1970

AUTHORS

Khashayar Teimoori was born in Tehran, Iran in 1992. He is now pursuing B.S. at Mechanical Engineering in Azad University, Science and Research Branch of Tehran, Iran. He is simultaneously pursuing B.S. at Applied Mathematics in PN University, Tehran branch. He is a member of the technical societies as ASME, AMS, APS, ACM, ISME and IMS. He is also the originator of BackstretchTM. He is at present the team vice-president. His special interests are Computational Mathematics, Dynamical Structures, Analyzing the complicated structures in mechanical systems and fluid behaviors.

Muhammad Hassani was born in Behshahr, Iran in 1990. He is now pursuing B.S. at Mechanical Engineering in the Department of Mechanical and Aerospace Engineering, Azad University, Science and Research Branch of Tehran. He is currently cooperating as the Head of Designing Department in BackstretchTM. His special interests are Animation, Photography, and Car Design.

Milad Khorami was born in Ardebil, Iran in 1985. He graduated at B.S. degree in Mechanical Engineering in Tabriz University in 2009. He post-graduated at M.S degree in Mechanical Engineering in Science and Research Branch, Azad University, Tehran, Iran in 2012. Currently he is the Artificial Intelligence Manager of the BackstretchTM. His research interests include cooling towers, artificial neural networks (ANNs), geothermal and solar energy. He has accomplished searching on several projects; He worked on the prediction counter flow wet cooling tower with ANN, Polymer and Surfactant Injection.

Salar Mirzaei was born in Urmia, Iran in 1990. He is now pursuing B.S. at Mechanical Engineering in the Department of Mechanical and Aerospace Engineering, Azad University, Science and Research Branch of Tehran. He has cooperated with Backstretch ™ as Credential Manager and Head of Programming Department since Feb 2010.

Ali Sahebi was born in 1966. He was admitted to Oxford House College in September 1988. At the same year in August, he was admitted to American Applied Arts in London branch at designing major. He started to have cooperated with BackstretchTM as the Head of International Affairs in 2010. He is now the pres dent of BackstretchTM.

