# DETERMINATION OF BUS VOLTAGES, POWER LOSSES AND FLOWS IN THE NIGERIA 330KV INTEGRATED POWER SYSTEM

Omorogiuwa Eseosa<sup>1</sup>, Emmanuel A. Ogujor<sup>2</sup>
<sup>1</sup>Electrical/Electronic Engineering, Faculty of Engineering
University Of Port Harcourt, Rivers State, Nigeria
<sup>2</sup>Electrical/Electronic Engineering, Faculty of Engineering
University Of Benin, Edo State. Nigeria

#### **ABSTRACT**

This paper involves power flow analysis of the Nigeria 330KV integrated power system. The test system involves the integrated network consisting of 52 buses, 17 generating stations, 64 transmission lines and 4 control centers. Newton-Raphson (N-R) power flow algorithm was carried out on this network using the relevant data as obtained from power holding company of Nigeria [PHCN], in ETAP 4.0 Transient Analyzer Environment, to determine bus voltages, real and reactive power flows and losses of the transmission lines and generators. The results obtained showed that the bus voltages outside the statutory limit of (0.95pu, 313.5KV) to (1.05pu, 346.5KV) include: (Makurdi, 0.931pu), (Damaturu, 0.934pu), Gombe, 0.941pu), (Maiduguri, 0.943pu), (Yola, 0.921pu), (Jos, 0.937pu) and (Jalingo, 0.929pu). The total losses emanating from both generators and transmission lines are 2.331MW+j32.644MVar and 90.3MW+j53.300Mvar respectively, and 39% of the reactive power losses are from the generating stations but the real power losses are about 2.58%. The result concludes that Nigeria still have a very long way to go in order to have a sustainable, efficient and reliable power system which, both the integrated power projects (IPP) and the Nigeria integrated power projects (NIPP) cannot effectively guarantee. It is recommended that, the generators require reactive compensation while the transmission lines require both real and reactive power compensation using Flexible Alternating Current Transmission Systems (FACTS) devices for effective utilization.

KEYWORDS: ETAP 4.0, PHCN, N-R, IPP, NIPP, NIGERIA

#### I. Introduction

Before the unbundling of the Nigeria existing power network, it comprises 11,000KM transmission lines (330KV) [1]. it is faced with so many problems such as; Inability to effectively dispatch generated energy to meet the load demand, large number of uncompleted transmission line projects, reinforcement and expansion projects in the power industry, Poor Voltage profile in most northern parts of the grid, Inability of the existing transmission lines to wheel more than 4000MW of power at present operational problems, voltage and frequency controls[2, 3, 12]. Some of the transmission lines are also Fragile and radial nature, which is prone to frequent system collapse. Poor network configuration in some regional work centres, controlling the transmission line parameters, large numbers of overloaded transformers in the grid system, frequent vandalism of 330KV transmission lines in various parts of the country and using the transmission lines beyond their limit [3,4]. Also before the unbundling, the Nigeria existing 330KV network consist of nine generating stations, twenty eight buses and thirty two transmission lines [1]. Most researchers that worked on the existing network [1,2, 3, 4, 9, 11] recommended that the network be transformed from radial to ring, because of the high losses inherent in it and the violation of allowable voltage drop of + or – 5% of nominal value.

Power Holding Company of Nigeria (PHCN) in an attempt to solve these problems resulted in its unbundling. Thus, the Nigeria 330KV integrated network intends to improve the grid stability and creates an effective interconnection. It is anticipated to increase transmission strength because of the very high demand on the existing and aging infrastructure by building more power stations and transmission lines, through the Independent Power Projects(IPP)[1]. Considering the fact that most of the existing Nigeria generating stations are located far from the load centers with partial longitudinal network, there is possibility of experiencing low bus voltages, lines overload, frequency fluctuations and poor system damping in the network, thus making the stability of the network to be weak when subjected to fault conditions. In other to ascertain the impact of the integrated power projects on the existing network, a power or load flow program needs to be carried out.

Power flow analysis is one of the most important aspects of power system planning and operation. The load flow provides us the sinusoidal steady state of the entire system- voltages, real, reactive powers and line losses. It provides solution of the network under steady state condition subjected to certain inequality constraints such as nodal voltages, reactive power generation of the generators and gives the voltage magnitudes and angles at each bus in the steady state. This is rather important as the magnitudes of the bus voltages are required to be held within a specified limit. The following parameters can be determined in power flow study: Power flows in all branches in a network, power contributed by each generator, power losses in each component in the network and nodal voltages magnitudes and angles throughout the network[10]. Section 2.0 is an overview of the current status of the Nigeria 330KV integrated power network. Data used and the methodology adopted for this work including the modeling and simulation in ETAP 4.0 environment as well as the flow chart are shown are section 3.0. Load flow result showing power losses from both generators and transmission lines and bus voltages are shown in section 4.0 discussion of results obtained and the conclusion of the work are shown in section 5.0 and 6.0 respectively.

### II. OVERVIEW OF NIGERIA INTEGRATED POWER SYSTEM AND ITS CURRENT STATUS

The increasing demand for electricity in Nigeria is far more than what is available, thus resulting in the interconnected transmission systems being heavily loaded and stressed beyond their allowable tolerable limit. This constraint affects the quality of power delivered.

Currently, with some of the completed integrated power projects, the Nigerian national grid is an interconnection of 9,454.8KM length of 330KV and 8,985.28km length of 132KV transmission lines with seventeen power stations with the completion of some of the integrated power projects. The grid interconnects these stations with fifty two buses and sixty four transmission lines of either dual or single circuit lines and has four control centers (one national control center at Oshogbo and three supplementary control centers at Benin, Shiroro and Egbin) [1].

The current projection of power generation by PHCN is to generate 26,561MW as envisioned in the vision 20:2020 target [14]. Presently, of the seventeen (17) active power generating stations, eight of these are owned by the Federal Government (existing) with installed capacity of 6,256MW and 2,484MW is available. The remaining nine (9) are from both the National Independent Power Project (NIPP) and the Independent Power Project (IPP) with total designed capacity of 2,809MW, of which 1,336.5MW is available. These generating stations are sometimes connected to load centers through very long, fragile and radial transmission lines. On completion of all the power projects in Nigeria, its total installed capacity will become 12,054MW.Table 1.0 shows the completed power generating and existing stations currently in use with their available and installed capacities [8, 14]. Table 2.0 shows the generating stations with their supposed installed capacities that are still under construction, while Table3.0 and 4.0 shows all the buses in both existing and the integrated network and the features of the integrated 330KV power network respectively. The transmission line parameter used for this study is shown in appendix A.

**Table 1.0** Generating stations that are currently in operation in Nigeria

| S/N | STATION | STATE | TURBINE | INSTALLED<br>CAPACITY(MW) | AVAILABLE<br>CAPACITY(MW) |
|-----|---------|-------|---------|---------------------------|---------------------------|
| 1   | Kainji  | Niger | Hydro   | 760                       | 259                       |

### International Journal of Advances in Engineering & Technology, July 2012. ©IJAET ISSN: 2231-1963

| 2    | Jebba           | Niger     | Hydro | 504   | 352     |
|------|-----------------|-----------|-------|-------|---------|
| 3    | Shiroro         | Niger     | Hydro | 600   | 402     |
| 4    | Egbin           | Lagos     | Steam | 1320  | 900     |
| 5*   | Trans-Amadi     | Rivers    | Gas   | 100   | 57.3    |
| 6*   | A.E.S (Egbin)   | Lagos     | Gas   | 250   | 211.8   |
| 7    | Sapele          | Delta     | Gas   | 1020  | 170     |
| 8*   | Ibom            | Akwa-Ibom | Gas   | 155   | 25.3    |
| 9*   | Okpai (Agip)    | Delta     | Gas   | 900   | 221     |
| 10   | Afam I-V        | Rivers    | Gas   | 726   | 60      |
| 11*  | Afam VI (Shell) | Rivers    | Gas   | 650   | 520     |
| 12   | Delta           | Delta     | Gas   | 912   | 281     |
| 13   | Geregu          | Kogi      | Gas   | 414   | 120     |
| 14*  | Omoku           | Rivers    | Gas   | 150   | 53      |
| 15*  | Omotosho        | Ondo      | Gas   | 304   | 88.3    |
| 16*  | Olorunshogo     | Ogun      | Gas   | 100   | 54.3    |
|      | phase I         |           |       |       |         |
| 17*  | Olorunshogo     | Ogun      | Gas   | 200   | 105.5   |
|      | phase II        |           |       |       |         |
| Tota | l Power         |           |       | 9,065 | 3,855.5 |

Note: Generating stations marked\* are the completed and functional independent power generation already in the Grid

Table 2.0 Ongoing national independent power projects on power generation

| S/N  | STATION  | STATE       | TURBINE | INSTALLED    | AVAILABLE    |
|------|----------|-------------|---------|--------------|--------------|
|      |          |             |         | CAPACITY(MW) | CAPACITY(MW) |
| 1    | Calabar  | Cross River | Gas     | 563          | Nil          |
| 2    | Ihorvbor | Edo         | Gas     | 451          | Nil          |
| 3    | Sapele   | Delta       | Gas     | 451          | Nil          |
| 4    | Gbaran   | Bayelsa     | Gas     | 225          | Nil          |
| 5    | Alaoji   | Abia        | Hydro   | 961          | Nil          |
| 6    | Egbema   | Imo         | Gas     | 338          | Nil          |
| 7    | Omoku    | Rivers      | Gas     | 252          | Nil          |
| Tota | l Power  |             |         | 2,989        | Nil          |

**Table 3.0** Buses for both existing and integrated 330kv power project

| S/NO | BUSES         | S/NO | BUSES           | S/NO | BUSES      |
|------|---------------|------|-----------------|------|------------|
| 1    | Shiroro       | 21   | New haven south | 41   | Yola       |
| 2    | Afam          | 22   | Makurdi         | 42   | Gwagwalada |
| 3    | Ikot-Ekpene   | 23   | B-kebbi         | 43   | Sakete     |
| 4    | Port-Harcourt | 24   | Kainji          | 44   | Ikot-Abasi |
| 5    | Aiyede        | 25   | Oshogbo         | 45   | Jalingo    |
| 6    | Ikeja west    | 26   | Onitsha         | 46   | Kaduna     |
| 7    | Papalanto     | 27   | Benin north     | 47   | Jebba GS   |
| 8    | Aja           | 28   | Omotosho        | 48   | Kano       |
| 9    | Egbin PS      | 29   | Eyaen           | 49   | Katampe    |
| 10   | Ajaokuta      | 30   | Calabar         | 50   | Okpai      |
| 11   | Benin         | 31   | Alagbon         | 51   | Jebba      |
| 12   | Geregu        | 32   | Damaturu        | 52   | AES        |
| 13   | Lokoja        | 33   | Gombe           |      |            |
| 14   | Akangba       | 34   | Maiduguri       |      |            |
| 15   | Sapele        | 35   | Egbema          |      |            |
| 16   | Aladja        | 36   | Omoku           |      |            |
| 17   | Delta PS      | 37   | Owerri          |      |            |
| 18   | Alaoji        | 38   | Erunkan         |      |            |
| 19   | Aliade        | 39   | Ganmo           |      |            |
| 20   | New haven     | 40   | Jos             |      |            |

| <b>Table 4.0</b> Basic description of Nigeria 330kv integrated 330kv trans | smission line |
|----------------------------------------------------------------------------|---------------|
|----------------------------------------------------------------------------|---------------|

| Capacity of 330/132KV (MVA)    | 10,894  |
|--------------------------------|---------|
| Number of 330KV substation     | 28      |
| Total number of 330KV circuits | 62      |
| Length of 330KV lines(KM)      | 9,454.8 |
| Number of control centers      | 4       |
| Number of transmission lines   | 64      |
| Number of buses                | 52      |
| Number of generating stations  | 17      |

#### III. METHODOLOGY ADOPTED FOR THE WORK

Newton-Raphson (N-R) power flow algorithm was used for this study. This was modeled in ETAP 4.0 Transient Analyzer Environment.

#### 3.1 Data Collection:

The data used in this analysis and assessment were collected from Power Holding Company of Nigeria (PHCN). These was modeled and simulated in ETAP 4.0 Transient Analyzer environment using N-R power flow algorithm. The network for this study consist of Seventeen (17) generating stations, Fifty two (52) buses and Sixty four (64) transmission lines using N-R and modeled with ETAP 4.0 was carried out in other to determine the following: active and reactive power flows in all branches in a network, active and reactive power contributed by each generator, active and reactive power losses in each component in the network, bus voltages magnitudes and angles throughout the network.

#### 3.2 Design and Simulation of Nigeria 330KV Existing Network using N-R Method

The Newton Raphson method formulates and solves iteratively the following load flow equation [5,8]:

$$\begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix} \begin{bmatrix} J_1 J_2 \\ J_3 J_4 \end{bmatrix} = \begin{bmatrix} \Delta \delta \\ \Delta V \end{bmatrix}$$

Where  $\Delta P$  and  $\Delta Q$  are bus real power and reactive power mismatch vectors between specified value and calculated value, respectively;  $\Delta V$  and  $\Delta \delta$  represents bus voltage angle and magnitude vectors in an incremental form; and J1 through J4 are called jacobian matrices. The Newton Raphson method possesses a unique quadratic convergence characteristic. It usually has a very fast convergence speed compared to other load flow calculation methods. It also has the advantage that the convergence criteria are specified to ensure convergence for bus real power and reactive power mismatches. This criterion gives the direct control of the accuracy method of Newton-Raphson. The convergence criteria for the Newton-Raphson method are typically set to 0.001MW and MVar. The Newton-Raphson method is highly dependent on the voltage initial values.

#### Flow Chart for Newton-Raphson Algorithm used for the Modified Nigeria 330KV Network

The following steps were used in computing the N-R algorithm in ETAP 4.0 and the flow chart is shown in Figure 1.0.



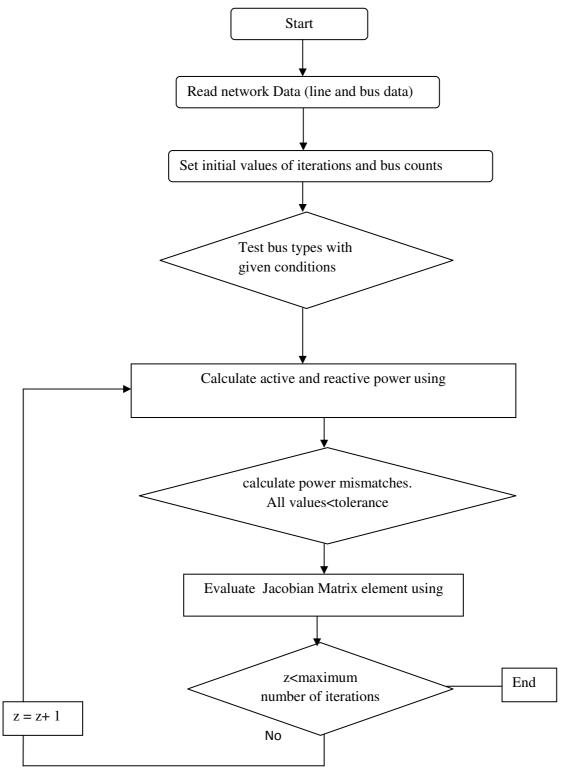



Figure 1.0 Flowchart for Newton-Raphson Load Flow Algorithm

- Step 1: Enter the Nigeria 330KV system data(line data, bus data, active and reactive power limit)
- Step 2: Set initial values of iterations and bus counts.
- Step 3: Test bus then specify types with given conditions
- Step4: Set the tolerance limit (convergence criterion)
- Step 5: Form Y-Bus matrix
- Step 6: Compute the active and reactive power of the network using equations respectively.
- Step 7: Evaluate the jacobian matrix and solve the linearized equation

Step 8: Compute power mismatches using equations

Step 9: Update nodal voltages using equations

#### 3.4 ETAP Power Station 2001

ETAP power station is a fully graphical electrical transient analyzer program that can run under the Microsoft, window 98, NT,4.0, 2000,Me,and XP environments. ETAP provides a very high level of reliability, protection and security of critical applications. It resembles real electrical system operation as closely as possible. It combines the electrical, logical, mechanical and physical attributes of system elements in the same database. Power station supports a number of features that assist in constructing networks of varying complexities. It is a foremost integrated database for electrical systems, allowing for multiple presentations of a system for different analysis or design purposes. ETAP power station can be used to run analysis such as short circuit analysis, load flow analysis, motor starting, harmonic transient stability, generator start-up, optimal power flow, DC load flow DC short circuit analysis, DC battery discharge analysis and reliability analysis[6].

#### 3.5 Input Data Used For Power Flow Analysis of 330KVIntegrated Network

The input data for the power/load flow analysis includes; Generators output power, maximum and minimum reactive power limit of the generator, MW and MVAR peak loads, Impedance of the lines, transmission line sizes, voltage and power ratings of the lines and transformer data, and the nominal and critical voltages of each of the buses.

Figure 2.0 shows the load flow modeling of the Nigeria 330KV integrated power network using ETAP 4.0.while Figure 3.0 shows the result obtained after simulation in ETAP environment.

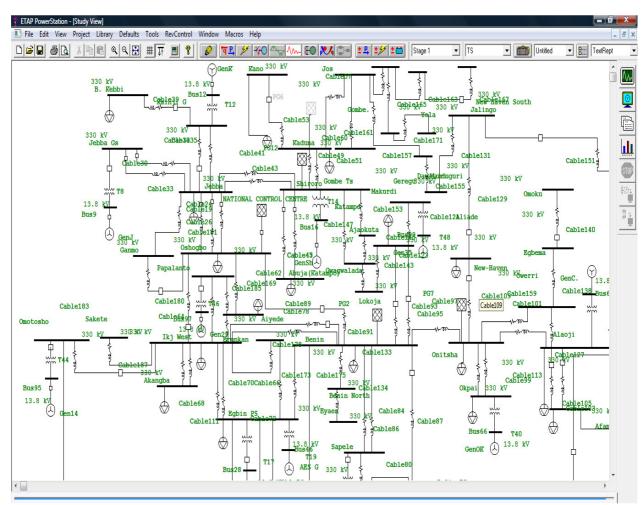



Figure 2.0: Modeling of the Integrated 330KV Network Using N-R algorithm

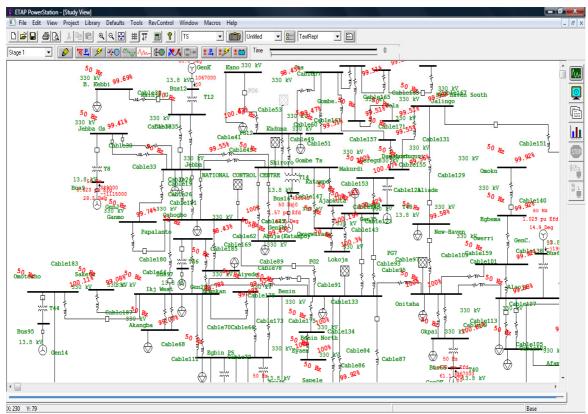



Figure 3.0 Load flow result of the integrated 330KV network using N-R algorithm

#### IV. RESULTS

The result obtained in this section shows the power flows in the transmission lines and the losses from both generators and lines. The bus voltages were also obtained to know the weak ones among them.

#### 4.1 Load flow results for the integrated power system after simulation

Table 5.0 gives the bus voltages and angles of the integrated network using N-R algorithm and table 6.0 is the power flow and line losses.

**Table 5.0** Buses voltages and phase angles for the integrated 330kvnetwork.

| Bus number | Bus name      | Voltage | Angle (Degrees) |
|------------|---------------|---------|-----------------|
| 1          | Shiroro       | 1.041   | -26.02          |
| 2          | Afam          | 1.038   | -34.59          |
| 3          | Ikot-Ekpene   | 1.042   | -21.41          |
| 4          | Port-Harcourt | 1.023   | -12.44          |
| 5          | Aiyede        | 1.038   | -14.47          |
| 6          | Ikeja west    | 1.002   | -27.61          |
| 7          | Papalanto     | 1.043   | -18.67          |
| 8          | Aja           | 1.023   | -33.82          |
| 9          | Egbin PS      | 1.04    | -13.68          |
| 10         | Ajaokuta      | 0.986   | -8.95           |
| 11         | Benin         | 1.032   | -8.45           |
| 12         | Geregu        | 1.043   | -9.54           |
| 13         | Lokoja        | 1.022   | -9.56           |
| 14         | Akangba       | 1.021   | 12.45           |
| 15         | Sapele        | 1.029   | -11.31          |
| 16         | Aladja        | 1.001   | -11.69          |
| 17         | Delta PS      | 1.045   | -10.69          |
| 18         | Alaoji        | 1.034   | -6.53           |
| 19         | Aliade        | 1.037   | -28.91          |

## International Journal of Advances in Engineering & Technology, July 2012. ©IJAET ISSN: 2231-1963

| 20 | New haven       | 1.052  | -23.38 |
|----|-----------------|--------|--------|
| 21 | New haven south | 0.964  | -12.11 |
| 22 | Makurdi         | 0.931  | -14.76 |
| 23 | B-kebbi         | 0.985  | 7.32   |
| 24 | Kainji          | 1.012  | -9.62  |
| 25 | Oshogbo         | 1.044  | -12.66 |
| 26 | Onitsha         | 1.021  | -9.72  |
| 27 | Benin north     | 1.042  | -11.09 |
| 28 | Omotosho        | 1.051  | -13.57 |
| 29 | Eyaen           | 1.023  | -6.56  |
| 30 | Calabar         | 1.035  | 0.00   |
| 31 | Alagbon         | 0.9925 | -12.31 |
| 32 | Damaturu        | 0.934  | -19.69 |
| 33 | Gombe           | 0.941  | -25.65 |
| 34 | Maiduguri       | 0.943  | -8.03  |
| 35 | Egbema          | 1.032  | -18.11 |
| 36 | Omoku           | 1.045  | -33.38 |
| 37 | Owerri          | 1.023  | -9.11  |
| 38 | Erunkan         | 0.932  | -34.76 |
| 39 | Ganmo           | 0.983  | -14.22 |
| 40 | Jos             | 0.937  | -11.44 |
| 41 | Yola            | 0.921  | -6.86  |
| 42 | Gwagwalada      | 0.998  | -24.32 |
| 43 | Sakete          | 0.983  | -8.29  |
| 44 | Ikot-Abasi      | 1.024  | -13.47 |
| 45 | Jalingo         | 0.929  | -4.45  |
| 46 | Kaduna          | 0.9922 | -8.61  |
| 47 | Jebba GS        | 1.023  | -15.43 |
| 48 | Kano            | 0.994  | -9.05  |
| 49 | Katampe         | 1.001  | -8.48  |
| 50 | Okpai           | 1.034  | -12.45 |
| 51 | Jebba           | 1.045  | -7.97  |
| 52 | AES             | 1.023  | -12.21 |

**Table 6.0** Power flows for the integrated 330kvnetwork.

| CONNECTED   |    | Sending End            |                        | Receiving E                | Receiving End              |                            | LOSSES                        |  |
|-------------|----|------------------------|------------------------|----------------------------|----------------------------|----------------------------|-------------------------------|--|
| BUS<br>From | То | P <sub>send</sub> (pu) | Q <sub>send</sub> (pu) | P <sub>received</sub> (pu) | Q <sub>received</sub> (pu) | Real<br>power<br>loss (pu) | Reactive<br>power<br>loss(pu) |  |
| 49          | 1  | 0.1775                 | -0.0727                | -0.1179                    | 0.0734                     | 0.0596                     | 0.0007                        |  |
| 14          | 6  | -0.1939                | -0.1200                | 0.1935                     | 0.1201                     | 0.0001                     | 0.0004                        |  |
| 2           | 18 | -0.0556                | -0.0383                | 0.0556                     | 0.0384                     | 0.0000                     | 0.0001                        |  |
| 2           | 3  | 0.0038                 | 0.0017                 | -0.0039                    | -0.0018                    | -0.0001                    | -0.0001                       |  |
| 2           | 4  | -0.0063                | 0.0003                 | 0.0066                     | -0.0003                    | 0.0003                     | 0.0000                        |  |
| 16          | 17 | 0.0512                 | -0.0566                | -0.0516                    | 0.0563                     | -0.0004                    | -0.0003                       |  |
| 5           | 25 | -0.1621                | -0.099                 | 0.1627                     | 0.1005                     | 0.0006                     | 0.0015                        |  |
| 5           | 6  | -0.0186                | -0.0119                | 0.0193                     | 0.0121                     | 0.0007                     | 0.0002                        |  |
| 5           | 7  | -0.0283                | -0.0182                | 0.0287                     | 0.0188                     | 0.0004                     | 0.0006                        |  |
| 8           | 9  | -0.0999                | -0.0619                | 0.0997                     | 0.0624                     | -0.0002                    | 0.0005                        |  |
| 8           | 31 | -0.0187                | -0.0119                | 0.0185                     | 0.0121                     | -0.0002                    | 0.0002                        |  |
| 10          | 11 | -0.0215                | -0.0134                | 0.0211                     | 0.0136                     | -0.0004                    | 0.0002                        |  |
| 10          | 12 | 0.0239                 | 0.0166                 | -0.0236                    | -0.0162                    | 0.0003                     | 0.0004                        |  |
| 10          | 13 | -0.0289                | -0.0180                | 0.0291                     | 0.0189                     | 0.0002                     | 0.0009                        |  |
| 16          | 15 | -0.1315                | 0.0163                 | 0.1319                     | -0.0161                    | 0.0004                     | 0.0002                        |  |
| 18          | 26 | -0.2461                | -0.1781                | 0.2463                     | 0.1784                     | 0.0002                     | 0.0003                        |  |
| 18          | 3  | 0.0457                 | 0.0294                 | -0.0459                    | -0.0291                    | -0.0002                    | 0.0003                        |  |
| 18          | 37 | -0.0153                | -0.0116                | 0.0152                     | 0.0117                     | -0.0001                    | 0.0001                        |  |

| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |    |         |         |        |        |         |         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|---------|---------|--------|--------|---------|---------|
| 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19 |    |         | -0.0050 | 0.0029 | 0.0021 |         | -0.0029 |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |    |         |         |        |        |         | -0.0021 |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23 | 24 | -0.0885 | -0.0543 | 0.0884 | 0.0548 | -0.0001 | 0.0005  |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |    |         |         |        |        |         | 0.0001  |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |    |         |         |        |        |         | 0.0002  |
| 111         26         0.0250         0.0194         -0.0255         -0.0190         0.0005         0.0004           11         27         0.0393         -0.0294         -0.0389         0.0300         0.0004         0.0000           11         9         0.0921         0.0779         -0.0925         -0.0779         -0.0004         0.0001           11         28         0.0476         0.0343         -0.0475         -0.0341         0.0001         0.0002           27         29         0.0308         0.0192         -0.0308         -0.0198         0.0002         -0.003           30         3         0.0283         0.0182         -0.0286         -0.0182         -0.0003         0.0003           32         34         0.0485         0.0349         -0.0489         -0.0347         0.0004         0.0003           35         37         0.0181         0.0132         -0.0179         -0.0135         0.0002         -0.000           35         36         0.0112         0.0088         -0.01179         -0.0135         0.0001         -0.000           35         36         0.0112         0.0088         -0.0117         -0.0135         0.0001         -0.000                                                                                         |    |    |         |         |        |        |         | 0.0003  |
| 111         27         0.0393         -0.0294         -0.0389         0.0300         0.0004         0.0004           11         9         0.0921         0.0779         -0.0925         -0.0779         -0.0004         0.0001           27         29         0.0308         0.0192         -0.0308         -0.0198         0.0002         -0.003           30         3         0.0283         0.0182         -0.0286         -0.0182         -0.0003         0.0003           32         33         0.0367         0.0240         -0.0364         -0.0239         0.0003         0.0003           32         34         0.0485         0.0349         -0.0489         -0.0347         0.0004         0.0003           35         37         0.0181         0.0132         -0.0179         -0.0135         0.0002         -0.000           35         36         0.0112         0.0088         -0.0111         -0.0089         0.0001         -0.000           35         36         0.0112         0.0088         -0.0111         -0.0089         0.0001         -0.000           36         6         0.22148         0.1549         -0.24601         -0.1589         0.0004         0.0003                                                                                         |    |    | _       |         |        |        |         | 0.0001  |
| 111         9         0.0921         0.0779         -0.0925         -0.0779         -0.0004         0.0000           11         28         0.0476         0.0343         -0.0475         -0.0341         0.0001         0.0002           27         29         0.0308         0.0192         -0.0308         -0.0182         -0.0003         0.0001           30         3         0.0283         0.0182         -0.0182         -0.0003         0.0001           32         34         0.0485         0.0349         -0.0489         -0.0347         0.0004         0.0003           35         37         0.0181         0.0132         -0.0179         -0.0135         0.0002         -0.000           35         36         0.0112         0.0088         -0.0111         -0.0089         0.0001         -0.000           35         36         0.0112         0.0088         -0.0111         -0.0089         0.0001         -0.000           35         36         0.0112         0.0088         -0.0111         -0.0089         0.0001         -0.000           36         0.2605         0.1596         -0.2601         -0.1589         0.0001         -0.000           38                                                                                                       |    |    |         |         |        |        |         | 0.0004  |
| 111         28         0.0476         0.0343         -0.0475         -0.0341         0.0001         0.0002           27         29         0.0308         0.0192         -0.0308         -0.0198         0.0002         -0.000           30         3         0.0283         0.0182         -0.0286         -0.0182         -0.0003         0.0003           32         33         0.0387         0.0240         -0.0364         -0.0239         0.0003         0.0001           32         34         0.0485         0.0349         -0.0489         -0.0347         0.0004         0.0002           35         36         0.0112         0.0088         -0.0179         -0.0135         0.0002         -0.000           35         36         0.0112         0.0088         -0.0111         -0.0089         0.0001         -0.000           35         36         0.0112         0.0088         -0.0111         -0.0089         0.0001         -0.000           35         36         0.2148         0.1549         -0.2596         -0.1581         0.0004         0.0007           38         6         0.2601         0.1589         -0.2596         -0.1581         0.0004         0.0005                                                                                           |    |    | _       |         |        |        |         | 0.0006  |
| 27         29         0.0308         0.0192         -0.0308         -0.0198         0.0002         -0.000           30         3         0.0283         0.0182         -0.0266         -0.0182         -0.0003         0.0000           32         33         0.0367         0.0240         -0.0364         -0.0239         0.0003         0.0001           32         34         0.0485         0.0349         -0.0489         -0.0347         0.0004         0.0002           35         37         0.0181         0.0132         -0.0179         -0.0135         0.0002         -0.000           35         36         0.0112         0.0088         -0.0111         -0.0089         0.0001         -0.000           9         6         0.2148         0.1549         -0.2142         -0.1589         0.0006         0.001-           9         38         0.2605         0.1589         -0.2561         -0.1589         0.0006         0.001-           38         6         0.2601         0.1589         -0.2636         0.4111         0.0025         0.003           39         25         0.2668         -0.4055         -0.2636         0.4111         0.0025         0.0034                                                                                                 |    |    |         |         |        |        |         |         |
| 30         3         0.0283         0.0182         -0.0286         -0.0182         -0.0003         0.0003           32         33         0.0367         0.0240         -0.0364         -0.0239         0.0003         0.0001           32         34         0.0485         0.0349         -0.0489         -0.0347         0.0004         0.0002           35         37         0.0181         0.0132         -0.0179         -0.0135         0.0002         -0.000           35         36         0.0112         0.0088         -0.0111         -0.0089         0.0001         -0.000           9         6         0.2148         0.1549         -0.2142         -0.1535         0.0006         0.0014           9         38         0.2605         0.1596         -0.2601         -0.1589         0.0004         0.0003           38         6         0.2661         0.1589         -0.2596         -0.1581         0.0005         0.0003           39         25         0.2668         -0.4055         -0.2636         0.4111         0.0032         0.005           33         40         0.0674         0.1201         -0.0673         -0.1203         0.0001         -0.004                                                                                                |    |    | _       |         |        |        |         |         |
| 32         33         0.0367         0.0240         -0.0364         -0.0239         0.0003         0.0001           32         34         0.0485         0.0349         -0.0489         -0.0347         0.0004         0.0002           35         37         0.0181         0.0132         -0.0179         -0.0135         0.0002         -0.0002           9         6         0.2148         0.1549         -0.2142         -0.1535         0.0006         0.0012           9         38         0.2605         0.1596         -0.2601         -0.1589         0.0004         0.0005           38         6         0.2601         0.1589         -0.2596         -0.1581         0.0005         0.0003           39         25         0.2668         -0.4055         -0.2636         0.4111         0.0032         0.005           39         51         -0.2668         0.4055         0.2694         -0.4010         0.0026         0.003           33         40         0.0674         0.1201         -0.0673         -0.1203         0.0001         -0.002           42         49         -0.0115         -0.0072         0.0118         0.0071         0.0003           42                                                                                                  |    |    |         |         |        |        |         | -0.0006 |
| 32         34         0.0485         0.0349         -0.0489         -0.0347         0.0004         0.0002           35         37         0.0181         0.0132         -0.0179         -0.0135         0.0002         -0.000           35         36         0.0112         0.0088         -0.0111         -0.0089         0.0001         -0.000           9         6         0.2148         0.1549         -0.2142         -0.1535         0.0006         0.0014           9         38         0.2605         0.1596         -0.2601         -0.1589         0.0005         0.0005           38         6         0.2601         0.1589         -0.2596         -0.1581         0.0005         0.0003           39         25         0.2668         -0.4055         -0.2636         0.4111         0.0032         0.0054           33         40         0.0674         0.1201         -0.673         -0.1203         0.0001         -0.002           33         41         0.0790         0.1002         -0.0789         0.1003         0.0067         -0.002           42         49         -0.0115         -0.0072         0.0118         0.0071         0.0003         -0.0064                                                                                                |    |    |         |         |        |        |         |         |
| 35         37         0.0181         0.0132         -0.0179         -0.0135         0.0002         -0.000           35         36         0.0112         0.0088         -0.0111         -0.0089         0.0001         -0.000           9         6         0.2148         0.1549         -0.2142         -0.1535         0.0006         0.0014           9         38         0.2605         0.1596         -0.2601         -0.1589         0.0004         0.0007           38         6         0.2601         0.1589         -0.2596         -0.1581         0.0005         0.0003           39         25         0.2668         -0.4055         -0.2636         0.4111         0.0032         0.005           39         51         -0.2668         0.4055         0.2694         -0.4010         0.0026         0.0043           33         40         0.0674         0.1201         -0.0673         -0.1203         0.0001         -0.002           42         49         -0.0115         -0.0072         0.0118         0.0071         0.0003         -0.0067           42         13         0.0292         0.0181         -0.0289         -0.0182         0.0003         -0.000 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>               |    |    |         |         |        |        |         |         |
| 35         36         0.0112         0.0088         -0.0111         -0.0089         0.0001         -0.000           9         6         0.2148         0.1549         -0.2142         -0.1535         0.0006         0.0014           9         38         0.2605         0.1589         -0.2601         -0.1589         0.0004         0.0005           38         6         0.2601         0.1589         -0.2596         -0.1581         0.0005         0.0003           39         25         0.2668         -0.4055         -0.2636         0.4111         0.0032         0.005           39         51         -0.2668         0.4055         0.2694         -0.4010         0.0026         0.0043           33         40         0.0674         0.1201         -0.0673         -0.1203         0.0001         -0.002           42         49         -0.0115         -0.0072         0.0118         0.0071         0.0003         -0.0067           42         13         0.0292         0.0181         -0.0289         -0.0182         0.0003         -0.006           42         1         -0.0175         -0.0109         0.0177         0.0110         0.0002         0.0002                                                                                                |    |    |         |         |        |        |         |         |
| 9         6         0.2148         0.1549         -0.2142         -0.1535         0.0006         0.0014           9         38         0.2605         0.1596         -0.2601         -0.1589         0.0004         0.0007           38         6         0.2601         0.1589         -0.2596         -0.1581         0.0005         0.0003           39         25         0.2668         -0.4055         -0.2636         0.4111         0.0026         0.0043           33         40         0.0674         0.1201         -0.0673         -0.1203         0.0001         -0.002           42         49         -0.0115         -0.0072         0.0118         0.0071         0.0003         -0.007           42         13         0.0292         0.0181         -0.0289         -0.0182         0.0003         -0.002           42         1         -0.0175         -0.0109         0.0177         0.0118         0.0024         0.0003         -0.000           42         1         -0.0175         -0.0109         0.0177         0.0118         0.0249         0.0000         0.0002           42         1         -0.0175         -0.0199         0.0177         0.0110 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-0.0003</td></td<> |    |    |         |         |        |        |         | -0.0003 |
| 9         38         0.2605         0.1596         -0.2601         -0.1589         0.0004         0.0005           38         6         0.2601         0.1589         -0.2596         -0.1581         0.0005         0.0008           39         25         0.2668         -0.4055         -0.2636         0.4111         0.0032         0.0054           39         51         -0.2668         0.4055         0.2694         -0.4010         0.0026         0.0043           33         40         0.0674         0.1201         -0.0673         -0.1203         0.0001         -0.002           42         49         -0.0115         -0.0072         0.0118         0.0071         0.0003         -0.0067           42         13         0.0292         0.0181         -0.0289         -0.0182         0.0003         -0.002           42         1         -0.0175         -0.0109         0.0177         0.0110         0.0002         0.0003           42         1         -0.0175         -0.0109         0.0177         0.0110         0.0002         0.0001           6         25         -0.0180         -0.0247         0.0181         0.0249         0.0000         0.0002 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-0.0001</td>        |    |    |         |         |        |        |         | -0.0001 |
| 38         6         0.2601         0.1589         -0.2596         -0.1581         0.0005         0.0005           39         25         0.2668         -0.4055         -0.2636         0.4111         0.0032         0.005           39         51         -0.2668         0.4055         0.2694         -0.4010         0.0026         0.0043           33         40         0.0674         0.1201         -0.0673         -0.1203         0.0001         -0.0003           33         41         0.0790         0.1002         -0.0789         0.1003         0.0067         -0.002           42         49         -0.0115         -0.0072         0.0118         0.0071         0.0003         -0.002           42         13         0.0292         0.0181         -0.0289         -0.0182         0.0003         -0.002           42         1         -0.0175         -0.0109         0.0177         0.0110         0.0002         0.000           42         1         -0.0175         -0.0109         0.0177         0.0110         0.0002         0.000           6         25         -0.0180         -0.0247         0.0181         0.0249         0.0000         0.000                                                                                                   |    |    |         |         |        |        |         | 0.0014  |
| 39         25         0.2668         -0.4055         -0.2636         0.4111         0.0032         0.0056           39         51         -0.2668         0.4055         0.2694         -0.4010         0.0026         0.0043           33         40         0.0674         0.1201         -0.0673         -0.1203         0.0001         -0.000           42         49         -0.0115         -0.0072         0.0118         0.0071         0.0003         -0.000           42         13         0.0292         0.0181         -0.0289         -0.0182         0.0003         -0.000           42         1         -0.0175         -0.0109         0.0177         0.0110         0.0003         -0.000           42         1         -0.0175         -0.0109         0.0177         0.0110         0.0002         0.000           6         25         -0.0180         -0.0247         0.0181         0.0249         0.0000         0.000           6         28         -0.0474         -0.0340         0.0475         0.0342         0.0001         0.000           6         7         0.0283         0.0185         -0.0283         -0.0182         0.0003         0.000                                                                                                     |    |    |         |         |        |        |         | -       |
| 39         51         -0.2668         0.4055         0.2694         -0.4010         0.0026         0.0043           33         40         0.0674         0.1201         -0.0673         -0.1203         0.0001         -0.000           33         41         0.0790         0.1002         -0.0789         0.1003         0.0067         -0.000           42         49         -0.0115         -0.0072         0.0118         0.0071         0.0003         -0.000           42         13         0.0292         0.0181         -0.0289         -0.0182         0.0003         -0.000           42         1         -0.0175         -0.0109         0.0177         0.0110         0.0002         0.0001           6         25         -0.0180         -0.0247         0.0181         0.0249         0.0000         0.0002           6         28         -0.0474         -0.0340         0.0475         0.0342         0.0001         0.0002           6         7         0.0283         0.0185         -0.0283         -0.0182         0.0003         0.0003           44         3         0.0464         0.0332         -0.0461         -0.0332         0.0000         0.0003                                                                                                  |    |    |         | +       |        |        |         |         |
| 33         40         0.0674         0.1201         -0.0673         -0.1203         0.0001         -0.000           33         41         0.0790         0.1002         -0.0789         0.1003         0.0067         -0.000           42         49         -0.0115         -0.0072         0.0118         0.0071         0.0003         -0.000           42         13         0.0292         0.0181         -0.0289         -0.0182         0.0003         -0.000           42         1         -0.0175         -0.0109         0.0177         0.0110         0.0002         0.0001           6         25         -0.0180         -0.0247         0.0181         0.0249         0.0000         0.0002           6         28         -0.0474         -0.0340         0.0475         0.0342         0.0001         0.0002           6         7         0.0283         0.0185         -0.0283         -0.0182         0.0003         0.0002           6         43         0.0364         0.0202         -0.0366         -0.0205         -0.0002         -0.0002           44         3         0.0464         0.0332         -0.0461         -0.0332         0.0000         0.0002                                                                                                 |    |    |         |         |        |        |         |         |
| 33         41         0.0790         0.1002         -0.0789         0.1003         0.0067         -0.000           42         49         -0.0115         -0.0072         0.0118         0.0071         0.0003         -0.000           42         13         0.0292         0.0181         -0.0289         -0.0182         0.0003         -0.000           42         1         -0.0175         -0.0109         0.0177         0.0110         0.0002         0.0001            6         25         -0.0180         -0.0247         0.0181         0.0249         0.0000         0.0002           6         28         -0.0474         -0.0340         0.0475         0.0342         0.0001         0.0003           6         7         0.0283         0.0185         -0.0283         -0.0182         0.0003         0.0006           6         43         0.0364         0.0202         -0.0366         -0.0205         -0.0002         -0.0002           44         3         0.0464         0.0332         -0.0461         -0.0332         0.0000         0.0003           3         21         0.0496         0.0316         -0.0494         -0.0310         0.0006         0.0003                                                                                                 |    |    |         |         |        |        |         | -       |
| 42         49         -0.0115         -0.0072         0.0118         0.0071         0.0003         -0.000           42         13         0.0292         0.0181         -0.0289         -0.0182         0.0003         -0.000           42         1         -0.0175         -0.0109         0.0177         0.0110         0.0002         0.0001           6         25         -0.0180         -0.0247         0.0181         0.0249         0.0000         0.0002           6         28         -0.0474         -0.0340         0.0475         0.0342         0.0001         0.0003           6         7         0.0283         0.0185         -0.0283         -0.0182         0.0003         0.0006           6         43         0.0364         0.0202         -0.0366         -0.0205         -0.0002         -0.000           44         3         0.0464         0.0332         -0.0461         -0.0332         0.0000         0.0001           45         41         0.0879         -0.1138         -0.0865         0.1149         0.0014         0.041           51         25         0.2638         -0.3355         -0.2594         0.3448         0.0044         0.0093                                                                                                  |    |    |         |         |        |        |         |         |
| 42         13         0.0292         0.0181         -0.0289         -0.0182         0.0003         -0.000           42         1         -0.0175         -0.0109         0.0177         0.0110         0.0002         0.0001           6         25         -0.0180         -0.0247         0.0181         0.0249         0.0000         0.0002           6         28         -0.0474         -0.0340         0.0475         0.0342         0.0001         0.0002           6         7         0.0283         0.0185         -0.0283         -0.0182         0.0003         0.0002           6         43         0.0364         0.0202         -0.0366         -0.0205         -0.0002         -0.0002           44         3         0.0464         0.0332         -0.0461         -0.0332         0.0000         0.0002           3         21         0.0496         0.0316         -0.0494         -0.0310         0.0006         0.0002           45         41         0.0879         -0.1138         -0.0865         0.1149         0.0014         0.0415           51         25         0.2638         -0.3355         -0.2594         0.3448         0.0044         0.0093                                                                                                 |    |    |         |         |        |        |         |         |
| 42         1         -0.0175         -0.0109         0.0177         0.0110         0.0002         0.000           6         25         -0.0180         -0.0247         0.0181         0.0249         0.0000         0.0002           6         28         -0.0474         -0.0340         0.0475         0.0342         0.0001         0.0002           6         7         0.0283         0.0185         -0.0283         -0.0182         0.0003         0.0002           6         43         0.0364         0.0202         -0.0366         -0.0205         -0.0002         -0.0002           44         3         0.0464         0.0332         -0.0461         -0.0332         0.0000         0.0003           3         21         0.0496         0.0316         -0.0494         -0.0310         0.0006         0.0001           45         41         0.0879         -0.1138         -0.0865         0.1149         0.0014         0.0415           51         25         0.2638         -0.3355         -0.2594         0.3448         0.0044         0.0093           47         51         -0.1669         0.6067         0.1674         -0.6055         0.0005         0.0012                                                                                                  |    |    |         |         |        |        |         |         |
| 6         25         -0.0180         -0.0247         0.0181         0.0249         0.0000         0.0002           6         28         -0.0474         -0.0340         0.0475         0.0342         0.0001         0.0002           6         7         0.0283         0.0185         -0.0283         -0.0182         0.0003         0.0002           6         43         0.0364         0.0202         -0.0366         -0.0205         -0.0002         -0.0002           44         3         0.0464         0.0332         -0.0461         -0.0332         0.0000         0.0002           3         21         0.0496         0.0316         -0.0494         -0.0310         0.0006         0.0001           45         41         0.0879         -0.1138         -0.0865         0.1149         0.0014         0.041           51         25         0.2638         -0.3355         -0.2594         0.3448         0.0044         0.0092           47         51         -0.1669         0.6067         0.1674         -0.6055         0.0005         0.0012           51         24         -0.4846         0.0717         0.4877         -0.0653         0.0031         0.0064                                                                                                 |    |    |         |         |        |        |         |         |
| 6         28         -0.0474         -0.0340         0.0475         0.0342         0.0001         0.0002           6         7         0.0283         0.0185         -0.0283         -0.0182         0.0003         0.0000           6         43         0.0364         0.0202         -0.0366         -0.0205         -0.0002         -0.000           44         3         0.0464         0.0332         -0.0461         -0.0332         0.0000         0.0003           3         21         0.0496         0.0316         -0.0494         -0.0310         0.0006         0.0003           45         41         0.0879         -0.1138         -0.0865         0.1149         0.0014         0.041           51         25         0.2638         -0.3355         -0.2594         0.3448         0.0044         0.0093           47         51         -0.1669         0.6067         0.1674         -0.6055         0.0005         0.0012           51         24         -0.4846         0.0717         0.4877         -0.0653         0.0031         0.0064           51         1         -0.1733         -0.2580         0.1740         0.2644         0.0007         0.0064                                                                                                  |    |    |         |         |        |        |         |         |
| 6         7         0.0283         0.0185         -0.0283         -0.0182         0.0003         0.0006           6         43         0.0364         0.0202         -0.0366         -0.0205         -0.0002         -0.000           44         3         0.0464         0.0332         -0.0461         -0.0332         0.0000         0.0003           3         21         0.0496         0.0316         -0.0494         -0.0310         0.0006         0.0001           45         41         0.0879         -0.1138         -0.0865         0.1149         0.0014         0.041           51         25         0.2638         -0.3355         -0.2594         0.3448         0.0044         0.0093           47         51         -0.1669         0.6067         0.1674         -0.6055         0.0005         0.0012           51         24         -0.4846         0.0717         0.4877         -0.0653         0.0031         0.0064           51         1         -0.1733         -0.2580         0.1740         0.2644         0.0007         0.0064           40         26         -0.0027         -0.0054         0.0033         -0.0060         0.0004         0.0114                                                                                                |    |    |         |         |        |        |         | _       |
| 6         43         0.0364         0.0202         -0.0366         -0.0205         -0.0002         -0.0002           44         3         0.0464         0.0332         -0.0461         -0.0332         0.0000         0.0003           3         21         0.0496         0.0316         -0.0494         -0.0310         0.0006         0.0003           45         41         0.0879         -0.1138         -0.0865         0.1149         0.0014         0.041           51         25         0.2638         -0.3355         -0.2594         0.3448         0.0044         0.0093           47         51         -0.1669         0.6067         0.1674         -0.6055         0.0005         0.0012           51         24         -0.4846         0.0717         0.4877         -0.0653         0.0031         0.0064           51         1         -0.1733         -0.2580         0.1740         0.2644         0.0007         0.0064           40         46         -0.0029         -0.0054         0.0033         -0.0060         0.0004         0.0114           40         22         -0.0027         -0.0050         0.0026         0.0055         -0.0001         0.0003     <                                                                                      |    |    |         |         |        |        |         | _       |
| 44         3         0.0464         0.0332         -0.0461         -0.0332         0.0000         0.0002           3         21         0.0496         0.0316         -0.0494         -0.0310         0.0006         0.0002           45         41         0.0879         -0.1138         -0.0865         0.1149         0.0014         0.041           51         25         0.2638         -0.3355         -0.2594         0.3448         0.0044         0.0092           47         51         -0.1669         0.6067         0.1674         -0.6055         0.0005         0.0012           51         24         -0.4846         0.0717         0.4877         -0.0653         0.0031         0.0062           51         1         -0.1733         -0.2580         0.1740         0.2644         0.0007         0.0062           40         46         -0.0029         -0.0054         0.0033         -0.0060         0.0004         0.0114           40         22         -0.0027         -0.0050         0.0026         0.0055         -0.0001         0.0002           46         1         -0.1509         -0.1180         0.1512         0.1189         0.0030         0.0002 <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td>             |    |    | _       |         |        |        |         |         |
| 3         21         0.0496         0.0316         -0.0494         -0.0310         0.0006         0.0001           45         41         0.0879         -0.1138         -0.0865         0.1149         0.0014         0.041           51         25         0.2638         -0.3355         -0.2594         0.3448         0.0044         0.0093           47         51         -0.1669         0.6067         0.1674         -0.6055         0.0005         0.0012           51         24         -0.4846         0.0717         0.4877         -0.0653         0.0031         0.0064           51         1         -0.1733         -0.2580         0.1740         0.2644         0.0007         0.0064           40         46         -0.0029         -0.0054         0.0033         -0.0060         0.0004         0.0114           40         22         -0.0027         -0.0050         0.0026         0.0055         -0.0001         0.0003           46         1         -0.1509         -0.1180         0.1512         0.1189         0.0030         0.0009           20         26         -0.13468         -0.0855         0.1351         0.0862         0.0004         0.0002     <                                                                                      |    |    |         |         |        |        |         |         |
| 45         41         0.0879         -0.1138         -0.0865         0.1149         0.0014         0.041           51         25         0.2638         -0.3355         -0.2594         0.3448         0.0044         0.0093           47         51         -0.1669         0.6067         0.1674         -0.6055         0.0005         0.0012           51         24         -0.4846         0.0717         0.4877         -0.0653         0.0031         0.0064           51         1         -0.1733         -0.2580         0.1740         0.2644         0.0007         0.0064           40         46         -0.0029         -0.0054         0.0033         -0.0060         0.0004         0.0114           40         22         -0.0027         -0.0050         0.0026         0.0055         -0.0001         0.0002           46         1         -0.1509         -0.1180         0.1512         0.1189         0.0030         0.0009           46         48         -0.1252         0.0886         0.1244         -0.0790         -0.0008         -0.009           20         26         -0.13468         -0.0855         0.1351         0.0862         0.0004         0.0002                                                                                          |    |    |         |         |        |        |         |         |
| 51         25         0.2638         -0.3355         -0.2594         0.3448         0.0044         0.0093           47         51         -0.1669         0.6067         0.1674         -0.6055         0.0005         0.0012           51         24         -0.4846         0.0717         0.4877         -0.0653         0.0031         0.0064           51         1         -0.1733         -0.2580         0.1740         0.2644         0.0007         0.0064           40         46         -0.0029         -0.0054         0.0033         -0.0060         0.0004         0.0114           40         22         -0.0027         -0.0050         0.0026         0.0055         -0.0001         0.0003           46         1         -0.1509         -0.1180         0.1512         0.1189         0.0030         0.0009           46         48         -0.1252         0.0886         0.1244         -0.0790         -0.0008         -0.009           20         26         -0.13468         -0.0855         0.1351         0.0862         0.0004         0.0002           50         26         0.4219         -0.0682         -0.4177         0.0769         0.0042         0.0003                                                                                         |    |    |         |         |        |        |         | _       |
| 47         51         -0.1669         0.6067         0.1674         -0.6055         0.0005         0.0012           51         24         -0.4846         0.0717         0.4877         -0.0653         0.0031         0.0064           51         1         -0.1733         -0.2580         0.1740         0.2644         0.0007         0.0064           40         46         -0.0029         -0.0054         0.0033         -0.0060         0.0004         0.0114           40         22         -0.0027         -0.0050         0.0026         0.0055         -0.0001         0.0002           46         1         -0.1509         -0.1180         0.1512         0.1189         0.0030         0.0009           46         48         -0.1252         0.0886         0.1244         -0.0790         -0.0008         -0.009           20         26         -0.13468         -0.0855         0.1351         0.0862         0.0004         0.0002           20         21         -0.0468         -0.0260         0.0466         0.0259         -0.0002         -0.0002           50         26         0.4219         -0.0682         -0.4177         0.0769         0.0042         0.0004                                                                                       |    |    |         |         |        |        |         | _       |
| 51         24         -0.4846         0.0717         0.4877         -0.0653         0.0031         0.0064           51         1         -0.1733         -0.2580         0.1740         0.2644         0.0007         0.0064           40         46         -0.0029         -0.0054         0.0033         -0.0060         0.0004         0.0114           40         22         -0.0027         -0.0050         0.0026         0.0055         -0.0001         0.0005           46         1         -0.1509         -0.1180         0.1512         0.1189         0.0030         0.0009           46         48         -0.1252         0.0886         0.1244         -0.0790         -0.0008         -0.009           20         26         -0.13468         -0.0855         0.1351         0.0862         0.0004         0.0007           20         21         -0.0468         -0.0260         0.0466         0.0259         -0.0002         -0.0002           50         26         0.4219         -0.0682         -0.4177         0.0769         0.0042         0.0004           26         37         0.0156         0.0120         -0.0152         -0.0116         0.0004         0.0004                                                                                       |    |    |         |         | _      |        |         | -       |
| 51         1         -0.1733         -0.2580         0.1740         0.2644         0.0007         0.0064           40         46         -0.0029         -0.0054         0.0033         -0.0060         0.0004         0.0114           40         22         -0.0027         -0.0050         0.0026         0.0055         -0.0001         0.0003           46         1         -0.1509         -0.1180         0.1512         0.1189         0.0030         0.0009           46         48         -0.1252         0.0886         0.1244         -0.0790         -0.0008         -0.009           20         26         -0.13468         -0.0855         0.1351         0.0862         0.0004         0.0007           20         21         -0.0468         -0.0260         0.0466         0.0259         -0.0002         -0.0002           50         26         0.4219         -0.0682         -0.4177         0.0769         0.0042         0.0003           26         37         0.0156         0.0120         -0.0152         -0.0116         0.0004         0.0004                                                                                                                                                                                                           |    |    |         |         |        |        |         |         |
| 40         46         -0.0029         -0.0054         0.0033         -0.0060         0.0004         0.0114           40         22         -0.0027         -0.0050         0.0026         0.0055         -0.0001         0.0002           46         1         -0.1509         -0.1180         0.1512         0.1189         0.0030         0.0009           46         48         -0.1252         0.0886         0.1244         -0.0790         -0.0008         -0.009           20         26         -0.13468         -0.0855         0.1351         0.0862         0.0004         0.0007           20         21         -0.0468         -0.0260         0.0466         0.0259         -0.0002         -0.0002           50         26         0.4219         -0.0682         -0.4177         0.0769         0.0042         0.0087           26         37         0.0156         0.0120         -0.0152         -0.0116         0.0004         0.0004                                                                                                                                                                                                                                                                                                                              |    |    |         |         |        |        |         | -       |
| 40         22         -0.0027         -0.0050         0.0026         0.0055         -0.0001         0.0005           46         1         -0.1509         -0.1180         0.1512         0.1189         0.0030         0.0005           46         48         -0.1252         0.0886         0.1244         -0.0790         -0.0008         -0.009           20         26         -0.13468         -0.0855         0.1351         0.0862         0.0004         0.0007           20         21         -0.0468         -0.0260         0.0466         0.0259         -0.0002         -0.000           50         26         0.4219         -0.0682         -0.4177         0.0769         0.0042         0.0003           26         37         0.0156         0.0120         -0.0152         -0.0116         0.0004         0.0004                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |    |         |         |        |        |         | -       |
| 46         1         -0.1509         -0.1180         0.1512         0.1189         0.0030         0.0009           46         48         -0.1252         0.0886         0.1244         -0.0790         -0.0008         -0.009           20         26         -0.13468         -0.0855         0.1351         0.0862         0.0004         0.0007           20         21         -0.0468         -0.0260         0.0466         0.0259         -0.0002         -0.000           50         26         0.4219         -0.0682         -0.4177         0.0769         0.0042         0.0087           26         37         0.0156         0.0120         -0.0152         -0.0116         0.0004         0.0004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |    |         |         |        |        |         | 0.0005  |
| 46         48         -0.1252         0.0886         0.1244         -0.0790         -0.0008         -0.009           20         26         -0.13468         -0.0855         0.1351         0.0862         0.0004         0.0007           20         21         -0.0468         -0.0260         0.0466         0.0259         -0.0002         -0.0002           50         26         0.4219         -0.0682         -0.4177         0.0769         0.0042         0.0087           26         37         0.0156         0.0120         -0.0152         -0.0116         0.0004         0.0004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |    |         | +       |        |        |         | 0.0009  |
| 20     26     -0.13468     -0.0855     0.1351     0.0862     0.0004     0.0007       20     21     -0.0468     -0.0260     0.0466     0.0259     -0.0002     -0.0002       50     26     0.4219     -0.0682     -0.4177     0.0769     0.0042     0.0087       26     37     0.0156     0.0120     -0.0152     -0.0116     0.0004     0.0004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |    |         |         |        |        |         | -0.0096 |
| 20         21         -0.0468         -0.0260         0.0466         0.0259         -0.0002         -0.0002           50         26         0.4219         -0.0682         -0.4177         0.0769         0.0042         0.0087           26         37         0.0156         0.0120         -0.0152         -0.0116         0.0004         0.0004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |    |         |         |        |        |         | 0.0007  |
| 50         26         0.4219         -0.0682         -0.4177         0.0769         0.0042         0.0087           26         37         0.0156         0.0120         -0.0152         -0.0116         0.0004         0.0004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |    |         |         |        |        |         | -0.0001 |
| 26         37         0.0156         0.0120         -0.0152         -0.0116         0.0004         0.0004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |    |         |         |        |        |         | 0.0087  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |    |         |         |        |        |         | 0.0004  |
| 10tal Power Loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |    |         |         |        |        | 0.0903  | 0.0533  |

Tables 7.0 shows the active and reactive power losses from individual generators while table 8.0 give a summary of total power losses from both generators and transmission lines. Figure 4.0 shows a plot of bus voltages versus bus numbers for the Nigeria 330KV integrated network.

Table 7.0 Power losses (active and reactive) from generators

| S/N | GENERATORS | MW     | MVar   |
|-----|------------|--------|--------|
| 1   | Kainji     | 0.3989 | 4.299  |
| 2   | Jebba      | 0.3761 | 5.0533 |
| 3   | Shiroro    | 0.3794 | 1.8690 |

| 4       | Egbin              | 0.4137 | 6.4565  |
|---------|--------------------|--------|---------|
| 5       | Trans-Amadi        | 0.0268 | 0.6833  |
| 6       | A.E.S              | 0.0548 | 1.3207  |
| 7       | Sapele             | 0.255  | 0.1258  |
| 8       | Ibom               | 0.0035 | 0.235   |
| 9       | Okpai              | 0.2699 | 3.089   |
| 10      | Afam i-v           | 0.0051 | 0.107   |
| 11      | Afam vi            | 0.0016 | 0.293   |
| 12      | Delta              | 0.0358 | 5.381   |
| 13      | Geregu             | 0.0747 | 2.198   |
| 14      | Omoku              | 0.0012 | 0.3031  |
| 15      | Omotosho           | 0.0326 | 0.4518  |
| 16      | Olorunsogo phase 1 | 0.0024 | 0.4329  |
| 17      | Olorunsogo phase 2 | 0.0016 | 0.3439  |
| TOTAL P | OWER LOSSES        | 2.3331 | 32.6423 |

Table 8.0 Summary of total losses from generations and transmission lines

|            | Real (MW) | Reactive(Mvar) |
|------------|-----------|----------------|
| Generation | 2.3331    | 32.6423        |
| Lines      | 90.300    | 53.300         |
| Total loss | 92.6331   | 85.9423        |

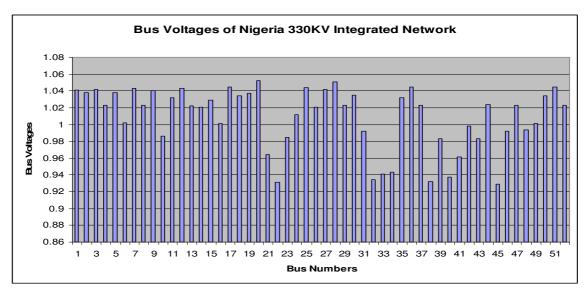



Figure 4.0 plot of bus voltages versus bus numbers for the Nigeria 330KV integrated network.

#### V. DISCUSSION

Power flow results of 330KVintegrated network was carried out using the records obtained from Power Holding Company of Nigeria (PHCN) logbooks and the Newton-Raphson power flow algorithm. It was found that of the total real power losses of 92.63331MW emanating from the network, the transmission lines constitute about 90.300MW and the generating stations gave 2.3331MW.Also, of the total reactive power losses of 85.9423MVar generated in the network, the transmission lines constitute 53.300MVar and the generating stations constitute 32.6423 MVar. Egbin had the highest reactive power losses in the network of about 6.4565Mvar while the highest active power loss is from Kanji of value 0.3989MW. The results obtained also showed that the bus voltages outside the statutory limit, of (0.95pu, 313.5KV) to (1.05pu, 346.5KV) include: (Makurdi, 0.931pu), (Damaturu, 0.934pu), (Gombe, 0.941pu), (Maiduguri, 0.943pu), (Yola, 0.921pu), (Jos, 0.937pu) and

(Jalingo, 0.929pu). On further investigation, it was found out that all these buses are all in the northern part of the country and some are still very far from the generating stations even in the NIPP and IPP stations. More so, the integrated network is still not a perfect ring arrangement, and the losses are still very high, hence, the benefits of ring connection is still lacking.

#### VI. CONCLUSION

The Nigeria 330KV integrated network has a relatively low voltage drop in the transmission lines compared to results obtained when the network consisted of 9 generating stations and 28 buses [1] Though, there was an obvious improvement over the existing case, some buses and generators of high reactive power values need to be compensated using either the conventional compensators such as reactors, capacitor banks, and tap changing transformers or the use of FACTS devices. This however will enable the Nigeria 330KV integrated transmission network to be used very close to its thermal limit, yet still remain very stable, reduce transmission line congestion and maintain grid stability and effective interconnectivity.

#### REFERENCES

- [1] Omorogiuwa Eseosa., "Ph.D Thesis on Efficiency Improvement Of The Nigeria 330KV Network Using Facts Device", University Of Benin, Benin City 2011
- [2] Onohaebi O.S and Omodamwen.O.Samuel "Estimation of Bus Voltages, Line Flows And Power Losses In The Nigeria 330KV Transmission Grid" International Journal Of Academic Research, Vol.2 No.3.May 2010.
- [3] Onohaebi O.S and Apeh S.T, "Voltage Instability in Electrical Network: a case study of the Nigerian 330KV Transmission Grid", University of Benin, 2007.
- [4]. O. S Onohaebi. and P. A. Kuale. "Estimation of Technical Losses in the Nigerian 330KV Transmission Network" International Journal of Electrical and Power Engineering (IJEPE). Vol.1: ISSN1990-7958,pages 402-409 www.medwelljournal.com/tracking/linkresult.php?id=81-IJEPE, 2007.
- [5] J. J. Grainger and W. D. Stevenson, "Power System and Analysis", Tata Mc- Graw-Hill, 2005.
- [6] Operation Technology Inc, 'Electrical Transient Analyzer Program (ETAP)' 2001.
- [7] IEEE Standards Board Approved by American National Standard Institute "IEEE Recommended Practice for Industrial and Commercial Power Systems Analysis (IEEE Std 399 1991)
- [8] PHCN 2011 report on generation profile of the country.
- [9].Komolafe,O.A And Omoigui M.O."An Assessment Of Reliability Of Electricity Supply In Nigeria.,"Conference Proceedings Of The 4<sup>th</sup> International Conference On Power Systems Operation And Planning (ICPSOP),ACCRA,Ghana, July 31-August 3,2000,Pp 89-91
- [10].E.Acha.,V.G.Agelidis,O.Anaya-Lara,T.J.E.Miller.,"Power Electronic Control In Electrical Systems"Newness Power Engineering Series 2002
- [11]. Michael .O.Omoigui And OlorunfemiJ.Ojo" Investigation Of Steady-State And Transient Stabilities Of The Restructured Nigeria 330KV Electric Power Network ". Proceedings of The International Conference And Exhibition And Power Systems, July 23-25 2007.
- [12].SadohJ,Ph.D (2006) "Thesis on Power System Protection: Investigation of System Protection Schemes on the 330KV of Nigeria Transmission Network", University of Benin, Benin City,2006.
- [13]PHCN TranSysco daily log book on power and voltage readings at the various transmission stations
- [14] National Control Centre Oshogbo, Generation and Transmission Grid Operations 2011 Annual Technical Report.

### APPENDIX A

| S/N | TRANSMISSION LINE |                   | LENGTH (KM) | CIRCUIT<br>TYPE | LINE IMPEDANCE (PU)              |       |               |
|-----|-------------------|-------------------|-------------|-----------------|----------------------------------|-------|---------------|
|     | From              | To                |             |                 | Z                                | В     | ADMITTANCE    |
| 1   | Katampe           | Shiroro           | 144         | Double          | 0.0029 + j 0.0205                | 0.308 | 8-j4.808      |
| 2   | Afam GS           | Alaoji            | 25          | Double          | 0.009 + j0.007                   | 0.104 | 9.615-j16.129 |
| 3   | Afam GS           | Ikot-Ekpene       | 90          | Double          | 0.0155 + j0.0172                 | 0.104 | 9.615-j16.129 |
| 4   | Afam GS           | Port-<br>Harcourt | 45          | Double          | 0.006 + j0.007                   | 0.104 | 9.615-j16.129 |
| 5   | Aiyede            | Oshogbo           | 115         | Single          | 0.0291 + j0.0349                 | 0.437 | 3.205-j2.288  |
| 6   | Aiyede            | Ikeja west        | 137         | Single          | 0.0341 + j0.0416                 | 0.521 | 2.695-j19.919 |
| 7   | Aiyede            | Papalanto         | 60          | Single          | 0.0291 + j0.0349                 | 0.437 | 3.205-j2.288  |
| 8   | Aja               | Egbin PS          | 14          | Double          | 0.0155 + j0.0172                 | 0.257 | 16.129-j9.615 |
| 9   | Aja               | Alagbon           | 26          | Double          | 0.006+j0.007                     | 0.257 | 6.494-j3.891  |
| 10  | Ajaokuta          | Benin             | 195         | Single          | 0.0126+j0.0139                   | 0.208 | 1.429-j12.180 |
| 11  | Ajaokuta          | Geregu            | 5           | Double          | 0.0155+j0.0172                   | 0.257 | 6.494-j3.891  |
| 12  | Ajaokuta          | Lokoja            | 38          | Double          | 0.0155+j0.0172                   | 0.257 | 8-j4.808      |
| 13  | Akangba           | Ikeja west        | 18          | Single          | 0.0155+j0.0172                   | 0.065 | 32+j19.32     |
| 14  | Aladja            | Sapele            | 63          | Single          | 0.016+j0.019                     | 0.239 | 5.284-j51.913 |
| 15  | Alaoji            | Owerri            | 60          | Double          | 0.006+j0.007                     | 0.308 | 6.494-j3.891  |
| 16  | Aladja            | Delta PS          | 32          | Single          | 0.006+j0.007<br>0.016+j0.019     | 0.308 | 5.848-j4.184  |
| 17  | Alaoji            | Onitsha           | 138         | Single          | 0.035+j0.0419                    | 0.239 | 2.754-j33.553 |
| 18  | Alaoji            | Ikot-Ekpene       | 38          | Double          | 0.0155+j0.0172                   | 0.324 | 6.494-j3.891  |
| 19  | Aliade            | New Haven         | 150         | Double          | 0.006+j0.007                     | 0.237 | 16.129-j9.615 |
|     |                   | South             |             |                 |                                  |       |               |
| 20  | Aliade            | Makurdi           | 50          | Double          | 0.0205+j0.0246                   | 0.308 | 4.545-j3.247  |
| 21  | B-kebbi           | Kainji            | 310         | Single          | 0.0786+j0.0942                   | 1.178 | 1.235-j0.478  |
| 22  | Benin             | Ikeja west        | 280         | Double          | 0.0705+j0.0779                   | 1.162 | 1.637-j12.626 |
| 23  | Benin             | Sapele            | 50          | Double          | 0.0126+j0.0139                   | 0.208 | 3.194-j17.555 |
| 24  | Benin             | Delta PS          | 107         | Single          | 0.016+j0.019                     | 0.239 | 5.848-j4.184  |
| 25  | Benin             | Oshogbo           | 251         | Single          | 0.0636+j0.0763                   | 0.954 | 1.508-j12.932 |
| 26  | Benin             | Onitsha           | 137         | Single          | 0.0347+j0.0416                   | 0.521 | 2.8-j33.771   |
| 27  | Benin             | Benin north       | 20          | Single          | 0.049+j0.056                     | 0.208 | 8-j4.808      |
| 28  | Benin             | Egbin PS          | 218         | Single          | 0.016+j0.019                     | 0.239 | 5.848-j4.184  |
| 29  | Benin             | Omotosho          | 120         | Single          | 0.016+j0.019                     | 0.365 | 3.846-j2.739  |
| 30  | Benin North       | Eyaen             | 5           | Double          | 0.0126+j0.0139                   | 0.208 | 8-j4.808      |
| 31  | Calabar           | Ikot-Ekpene       | 72          | Double          | 0.0126+j0.0139                   | 0.208 | 6.494-j3.891  |
| 32  | Damaturu          | Gombe             | 135         | Single          | 0.0786+j0.0942                   | 1.178 | 1.19-j0.848   |
| 33  | Damaturu          | Maiduguri         | 140         | Single          | 0.0786+j0.0942                   | 1.178 | 1.19-j0.848   |
| 34  | Egbema            | Omoku             | 30          | Double          | 0.0126+j0.0139                   | 0.208 | 8-j4.808      |
| 35  | Egbema            | Owerri            | 30          | Double          | 0.0126+j0.0139                   | 0.208 | 8-j4.808      |
| 36  | Egbin PS          | Ikeja west        | 62          | Single          | 0.0155+j0.0172                   | 0.257 | 7.308+j57.14  |
| 37  | Egbin PS          | Erunkan           | 30          | Single          | 0.016+j0.019                     | 0.239 | 5.848-j4.184  |
| 38  | Erunkan           | Ikeja west        | 32          | Single          | 0.016+j0.019                     | 0.239 | 5.848-j4.184  |
| 39  | Ganmo             | Oshogbo           | 87          | Single          | 0.016+j0.019                     | 0.239 | 5.848-j4.184  |
| 40  | Ganmo             | Jebba             | 70          | Single          | 0.0341+j0.0416                   | 0.239 | 2.615-j1.919  |
| 41  | Gombe             | Jos               | 265         | Single          | 0.067+j0.081                     | 1.01  | 1.923-j16.456 |
| 42  | Gombe             | Yola              | 217         | Single          | 0.0245+j0.0292                   | 1.01  | 1.391-j2.999  |
| 43  | Gwagwalada        | Lokoja            | 140         | Double          | 0.0156+j0.0172                   | 0.257 | 6.494-j3.891  |
| 44  | Gwagwalada        | Shiroro           | 114         | Double          | 0.0155+j0.0172                   | 0.257 | 6.494-j3.891  |
| 45  | Ikeja west        | Oshogbo           | 252         | Single          | 0.0341+j0.0416                   | 0.521 | 2.695-j1.919  |
| 46  | Ikeja west        | Omotosho          | 160         | Single          | 0.024+j0.0292                    | 0.365 | 2.695-j1.919  |
| 47  | Ikeja west        | Papalanto         | 30          | Single          | 0.0398+0.0477                    | 0.597 | 2.695-j1.919  |
| 48  | Ikeja west        | Sakete            | 70          | Single          | 0.0398+j0.0477                   | 0.521 | 2.695-j1.919  |
| 49  | Ikot-Abasi        | IkotEkpene        | 75          | Double          | 0.0155+j0.0172                   | 0.257 | 6.494-j3.891  |
| 50  | Jebba             | Oshogbo           | 157         | Single          | 0.0133+j0.0172<br>0.0398+j0.0477 | 0.237 | 0.246-j3.092  |
| 51  | Jalingo           | Yola              | 132         | Single          | 0.0126+j0.0139                   | 0.208 | 8-j4.808      |
| 52  | Jebba             | Jebba GS          | 8           | Double          | 0.002+j0.0022                    | 0.033 | 3.174-j1.594  |

### International Journal of Advances in Engineering & Technology, July 2012. ©IJAET ISSN: 2231-1963

| 53 | Jebba      | Kainji             | 81  | Double | 0.0205+j0.0246 | 0.308 | 3.607-j40.328 |
|----|------------|--------------------|-----|--------|----------------|-------|---------------|
| 54 | Jebba      | Shiroro            | 244 | Single | 0.062+j0.0702  | 0.927 | 1.559-j13.297 |
| 55 | Jos        | Kaduna             | 197 | Single | 0.049+j0.0599  | 0.927 | 1.873-J1.337  |
| 56 | Jos        | Makurdi            | 230 | Double | 0.002+j0.0022  | 0.308 | 4.545-J3.247  |
| 57 | Kaduna     | Kano               | 230 | Single | 0.058+j0.0699  | 0.874 | 1.657-j14.12  |
| 58 | Kaduna     | Shiroro            | 96  | Single | 0.0249+j0.0292 | 0.364 | 3.935-j3.379  |
| 59 | Katampe    | Shiroro            | 144 | Double | 0.0205+j0.0246 | 0.308 | 8-j4.808      |
| 60 | New Haven  | Onitsha            | 96  | Single | 0.024+j0.0292  | 0.365 | 3.935-j33.79  |
| 61 | New Haven  | New Haven<br>South | 5   | Double | 0.0205+j0.0246 | 0.308 | 4.545-J3.247  |
| 62 | okpai      | Onitsha            | 80  | Double | 0.006+j0.007   | 0.104 | 16.13-J9.615  |
| 63 | Onitsha    | Owerri             | 137 | Double | 0.006+j0.007   | 0.104 | 16.13-J9.615  |
| 64 | IkotEkpene | New Haven<br>South | 143 | Double | 0.0205+j0.0246 | 0.257 | 6.494-j3.891  |

#### **Authors Biographies**

**Omorogiuwa Eseosa** holds a B.Eng. and M.Eng. Degrees in Electrical/Electronic Engineering and Electrical Power and Machines respectively from the University of Benin, Edo state, Nigeria. His research areas include power system optimization using artificial intelligence and application of Flexible Alternating Current Transmission System (FACTS) devices in power systems.He is a Lecturer at the Department of Electrical/Electronic Engineering University of Port Harcourt, Rivers State, Nigeria.



**Emmanuel A. Ogujor** is an Associate Professor/ Consultant in the Department of Electrical/Electronic Engineering, University of Benin, Benin City, Edo State, Nigeria and currently Head of Department with over twelve (12) years of teaching and research experience. He obtained B. Eng (Electrical/Electronic Engineering) 1997, M. Eng (2000) and PhD (2006) in Electric Power Systems and Machines Engineering from University of Benin. He has published over thirty (30) research papers in both national and international peer reviewed journals. His research interest includes:



Reliability/Protection of Electric Power Systems, Non-Conventional Energy Systems, Power System Planning and Vegetation Management in Electric Power Systems. He is a member of Institute of Electrical/Electronic Engineering (IEEE) USA, Nigerian Society of Engineers (NSE), and Council for the Regulation of Engineering in Nigeria (COREN).