SAG/SWELL MIGRATION USING MULTI CONVERTER UNIFIED POWER QUALITY CONDITIONER

SaiRam.I¹, Amarnadh.J², K. K. Vasishta Kumar³

¹Assoc. Prof., ²Prof. & HOD, ³Asstt. Prof., Deptt. of Electrical and Electronics Engineering, Dhanekula Institute of Engineering & Technology, Vijayawada.

ABSTRACT

This paper presents a new unified power-quality conditioning system (MC-UPQC), capable of simultaneous compensation for voltage and current in multibus/multifeeder systems. In this configuration, one shunt voltage-source converter (shunt VSC) and two or more series VSCs exist. The system can be applied to adjacent feeders to compensate for supply-voltage and load current imperfections on the main feeder and full compensation of supply voltage imperfections on the other feeders. In the proposed configuration, all converters are connected back to back on the dc side and share a common dc-link capacitor. Therefore, power can be transferred from one feeder to adjacent feeders to compensate for sag/swell and interruption. The performance of the proposed configuration has been verified through simulation studies using MATLAB/SIMULATION on a two-bus/two-feeder system and results are presented.

KEYWORDS: Power quality (PQ), unified power-quality conditioner (UPQC), voltage-source converter (VSC).

I. Introduction

Power quality is the quality of the electrical power supplied to electrical equipment. Poor power quality can result in mal-operation of the equipment .The electrical utility may define power quality as reliability and state that the system is 99.5% reliable.

MCUPQC is a new connection for a unified power quality conditioner (UPQC), capable of simultaneous compensation for voltage and current in multibus/multifeeder systems.

A MCUPQC consists of a one shunt voltage-source converter (shunt VSC) and two or more series VSCs, all converters are connected back to back on the dc side and share a common dc-link capacitor. Therefore, power can be transferred one feeder to adjacent feeders to compensate for sag/swell and interruption. The aims of the MCUPQC are:

- A. To regulate the load voltage (u/I) against sag/swell, interruption, and disturbances in the system to protect the Non-Linear/sensitive load L1.
- B. To regulate the load voltage (u/2) against sag/swell, interruption, and disturbances in the system to protect the sensitive/critical load L2.
- C. To compensate for the reactive and harmonic components of nonlinear load current (i[1]).

As shown in this figure 1 two feeders connected to two different substations supply the loads L1 and L2. The MC-UPQC is connected to two buses BUS1 and BUS2 with voltages of ut1 and ut2, respectively. The shunt part of the MC-UPQC is also connected to load L1 with a current of il1. Supply voltages are denoted by us1 and us2 while load voltages are ul1 and ul2. Finally, feeder currents are denoted by is1 and is2 and load currents are il1 and il2.

Bus voltages ut1 and ut2 are distorted and may be subjected to sag/swell. The load L1 is a nonlinear/sensitive load which needs a pure sinusoidal voltage for proper operation while its current is non-sinusoidal and contains harmonics. The load L2 is a sensitive/critical load which needs a purely sinusoidal voltage and must be fully protected against distortion, sag/swell and interruption. These types of loads primarily include production industries and critical service providers, such as medical centers, airports, or broadcasting centers where voltage interruption can result in severe economical losses or human damages.

©IJAET ISSN: 2231-1963

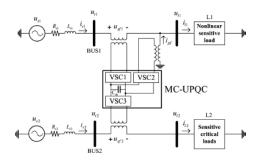


Fig. 1: Typical MC-UPQC used in a distribution system.

A Unified Power Quality Conditioner (UPQC) can perform the functions of both D-STATCOM and DVR. The UPQC consists of two voltage source converters (VSCs) that are connected to a common dc bus. One of the VSCs is connected in series with a distribution feeder, while the other one is connected in shunt with the same feeder. The dc- links of both VSCs are supplied through a common dc capacitor.

It is also possible to connect two VSCs to two different feeders in a distribution system is called Interline Unified Power Quality Conditioner (IUPQC). This paper presents a new Unified Power Quality Conditioning system called Multi Converter Unified Power Quality Conditioner (MC-UPQC).

II. MC-UPQC TO CONTROL POWER QUALITY

The series and shunt connected forms the basic principle for the operation of UPQC as it is the back to back connection of the series and shunt connection of the VSCs. If the UPQC device is connected between two feeders fed from different substations then it is called as interline Unified Power Quality Conditioner (IUPQC). If the UPQC device is connected between multibus/multifeeders fed from different substations then it is called as Multi-Converter Unified Power Quality Conditioning System (MCUPQC) MCUPQC can improve the power quality by injecting voltage in to any feeder from the DC link Capacitor.

This whole operation is controlled by controlling the three voltage source converters (VSC) connected between the two feeders in the Electrical distribution system.

III. DISTORTION AND SAG/SWELL ON THE BUS VOLTAGE IN FEEDER-1 AND FEEDER-2

Let us consider that the power system in Fig. 1 consists of two three-phase three-wire 380(v) (RMS, L-L), 50-Hz utilities. The BUS1 voltage (ut1) contains the seventh-order harmonic with a value of 22%, and the BUS2 voltage (ut2) contains the fifth order harmonic with a value of 35%. The BUS1 voltage contains 25% sag between 0.1s < t < 0.2s and 20% swell between 0.2s < t < 0.3s. The BUS2 voltage contains 35% sag between 0.15s < t < 0.25s and 30% swell between 0.25s < t < 0.3s.

The nonlinear/sensitive load L1 is a three-phase rectifier load which supplies an RC load of 10Ω and 30μ F. The simulink model for distribution system with MC-UPQC is shown in figure 2.

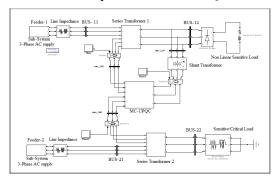


Figure 2: Simulink model of distribution system with MC-UPQC

IV. SIMULATION RESULTS

The critical load L2 contains a balanced RL load of 10Ω and 100mH. The MC-UPQC is switched on at t=0.02s. The BUS1 voltage, the corresponding compensation voltage injected by VSC1, and finally load L1 voltage are shown in Figure 3.

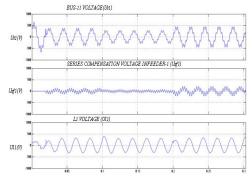


Figure 3:BUS1 voltage, series compensating voltage, and load voltage in Feeder1. Similarly, the BUS2 voltage, the corresponding compensation voltage injected by VSC3, and finally, the load L2 voltage are shown in figure 4.

Figure 4:BUS2 voltage, series compensating voltage, and load voltage in Feeder2.

As shown in these figures, distorted voltages of BUS1 and BUS2 are satisfactorily compensated for across the loads L1 and L2 with very good dynamic response.

The nonlinear load current, its corresponding compensation current injected by VSC2, compensated Feeder1 current, and, finally, the dc-link capacitor voltage are shown in Fig. 5.

The distorted nonlinear load current is compensated very well, and the total harmonic distortion (THD) of the feeder current is reduced from 28.5% to less than 5%. Also, the dc voltage regulation loop has functioned properly under all disturbances, such as sag/swell in both feeders.

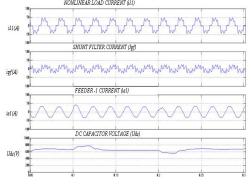


Fig 5: Nonlinear load current, compensating current, Feeder1 current, and capacitor voltage.

©IJAET ISSN: 2231-1963

V. CONCLUSIONS

The present topology illustrates the operation and control of Multi Converter Unified Power Quality Conditioner (MC-UPQC). The system is extended by adding a series VSC in an adjacent feeder. The device is connected between two or more feeders coming from different substations. A non-linear/sensitive load L-1 is supplied by Feeder-1 while a sensitive/critical load L-2 is supplied through Feeder-2. The performance of the MC-UPQC has been evaluated under voltage sag/swell in either feeder. In case of voltage sag, the phase angle of the bus voltage in which the shunt VSC (VSC2) is connected plays an important role as it gives the measure of the real power required by the load. The MC-UPQC can mitigate voltage sag in Feeder-1 and in Feeder-2 for long duration. The performance of the MC-UPQC is evaluated under sag/swell conditions and it is shown that the proposed MC-UPQC offers the following advantages:

- 1. Power transfer between two adjacent feeders for sag/swell and interruption compensation;
- 2. Compensation for interruptions without the need for a battery storage system and, consequently, without storage capacity limitation;
- 3. Sharing power compensation capabilities between two adjacent feeders which are not connected.

REFERENCES

- [1]. Hamid Reza Mohammadi, Ali Yazdian Varjani, and Hossein Mokhtari, "Multiconverter Unified Power- Quality Conditioning System: MC- UPQC" IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 24, NO.3, JULY 2009.
- [2]. R.Rezaeipour and A.Kazemi, "Review of Novel control strategies for UPQC" Internal Journal of Electric and power Engineering 2(4) 241-247, 2008.
- [3]. S. Ravi Kumar and S.Siva Nagaraju"Simulation of D-STATCOM and DVR in power systems" Vol. 2, No. 3, June 2007 ISSN 1819-6608 ARPN Journal of Engineering and Applied Sciences.
- [4]. M.V.Kasuni Perera" Control of a Dynamic Voltage Restorer to compensate single phase voltage sags" Master of Science Thesis, Stockholm, Sweden 2007.
- [5]. M. Basu, S. P. Das, and G. K. Dubey, "Comparative evaluation of two models of UPQC for suitable interface to enhance power quality," *Elect. Power Syst. Res.*, pp. 821–830, 2007.
- [6]. A. K. Jindal, A. Ghosh, and A. Joshi, "Interline unified power quality conditioner," *IEEE Trans. Power Del.*, vol. 22, no. 1, pp.364–372, Jan. 2007.
- [7]. K. Çalatay BAYINDIR on "Modeling of Custom power devices" PhD THESIS, ADANA, 2006.
- [8]. Olimpo Anaya-Lara and E. Acha "Modeling and Analysis of Custom Power Systems by PSCAD/EMTDC" IEEE Transactions on Power Delivery, Vol. 17, NO. 1, January 2002.
- [9]. G. Ledwich and A. Ghosh, "A flexible DSTATCOM operating in voltage and current control mode," Proc. Inst. Elect. Eng., Gen., Transm. Distrib., vol. 149, no. 2, pp. 215–224, 2002.
- [10].M. K. Mishra, A. Ghosh, and A. Joshi, "Operation of a DSTATCOM in voltage control mode," IEEE Trans. Power Del., vol. 18, no. 1, pp. 258–264, Jan. 2003.
- [11].Cai Rong," Analysis of STATCOM for Voltage Dip Mitigation". Thesis for the Degree of Master of Science, December 2004.
- [12].Paisan Boonchiam and Nadarajah Mithulananthan"Understanding of Dynamic Voltage Restorers Through MATLAB Simulation "Thammasat Int. J. Sc.Tech., Vol. 11,N o. 3, July-September 2006.

Authors Biography:

I. Sai Ram is currently working as Associate Professor in EEE department, Dhanekula Institute of Engineering & Technology, Vijayawada. His research areas include Power Systems, Electrical Machines and Control Systems.

J. Amarnadh is currently working as Professor in EEE department, University College of Engineering, JNTU, Hyderabad. His research areas include High Voltage and Gas Insulated substations.

K. K. Vasishta Kumar is currently working as Assistant Professor in EEE department, Dhanekula Institute of Engineering & Technology, Vijayawada. His research areas include Power Systems, Power Quality and Electrical Machines.

