
International Journal of Advances in Engineering & Technology, Nov 2011.

©IJAET ISSN: 2231-1963

236 Vol. 1, Issue 5, pp. 236-247

QUALITY ASSURANCE EVALUATION FOR PROGRAMS USING

MATHEMATICAL MODELS

Murtadha M. Hamad and Shumos T. Hammadi
Faculty of Computers, Department of Computer Science, Al-Anbar University, Iraq

ABSTRACT

The purpose of this paper based on comprehensive quality standards that have been developed for program

measurements. This paper adopted four measures to evaluate program performance (time complexity,

reliability, modularity and documentary) evaluate on the basis of performance, these measures are based on

mathematical models to evaluate the program . These measures applied on a sample of texts file that contain

programs written in C++, so that was formed texts file that contain program to be evaluated . Analyzed the

data obtained by using the algorithms proposed evaluation, which relied primarily on mathematical analysis,

using mathematical functions to evaluate each program. C# was used as an environment in which software

applied program evaluation. The results showed that the assessment depends on the structure and method of

writing program.

KEYWORDS: Quality Assurance, time complexity, reliability, modularity, documentary.

I. INTRODUCTION

With increasing importance placed on standard quality assurance methodologies by large companies

and government organizations, many software companies have implemented rigorous QA processes

to ensure that these standards are met. The use of standard QA methodologies cuts maintenance costs,

increases reliability, and reduces cycle time for new distributions. Modelling systems differ from most

software systems in that a model may fail to solve to optimality without the modelling system being

defective. This additional level of complexity requires specific QA activities. To make software

quality assurance (SQA) more cost-effective, the focus is on reproducible and automated techniques

[1].

In Software Quality, the definition should be as follows: software quality characterizes all attributes

on the excellence of computer system such as reliability, maintainability and usability. In terms of

practical application, software quality can be defined with three points on consistency: consistency

with determined function and performance; consistency with documented development standard;

consistency with the anticipated implied characteristics of all software specially developed [2].

Software quality is concerned with assuring that quality is built into the software products. Software

quality assures creation of complete, correct, workable, consistent, and verifiable software plans,

procedures, requirements, designs, and verification methods. Software quality assurance (SQA)

adherence to those software requirements, plans, procedures, and standards to successive products.

The software quality discipline consists of product assurance and process assurance activities that are

performed by the functions of SQA, software quality engineering, and software quality control [3].

Software quality assurance is that it is the systematic activities providing evidence of the fitness for

use of the total software product. SQA is achieved through the use of established guidelines for

quality control to ensure the integrity and prolonged life of software. SQA involves [4]:

• Establishing a Quality Assurance Group who has required independence.

• Participation of SQA in establishing the plans, standards and procedures for the project.

International Journal of Advances in Engineering & Technology, Nov 2011.

©IJAET ISSN: 2231-1963

237 Vol. 1, Issue 5, pp. 236-247

• Reviewing and auditing the software products and activities to ensure that they comply with

the applicable procedures and standards.

• Escalating unresolved issues to an appropriate level of management.

In this paper will explain the affects of software Quality Evaluation and measurement approved to

Software Performance Analysis. In the end, is discuss the results and the conclusions.

II. RELATED WORK

Several researches in the field of QA Evaluation have been done. There are a number of researchers

and scientists used the methods of modelling technique based on the mathematical technique for

evaluation to ensure the quality of the assessment. Some of these researches are summarized below:

Stefan Wagner, Florian Deissenboeck, and Sebastian Winter, This paper proposes that managing

requirements on quality aspects is an important issue in the development of software systems.

Difficulties arise from expressing them appropriately what in turn results from the difficulty of the

concept of quality itself. Building and using quality models is an approach to handle the complexity of

software quality. A novel kind of quality models uses the activities performed on and with the

software as an explicit dimension. These quality models are a well-suited basis for managing quality

requirements from elicitation over refinement to assurance. The paper proposes such an approach and

shows its applicability in an automotive case study [5].

Manju Lata and Rajendra Kumar, This paper presented an approach to optimize the cost of SQA. It

points out, how to optimize the investment into various SQA techniques and software quality. The

detection and removal of defect is a software inspection providing technical support for the defect

detection activity, and large volume of documentation are related to software inspection in the

development of the SQA as a cost effective. The value of an inspection improves the quality and

saves defect cost describe the optimization model for selecting the best commercial off-the-self

(COTS) software product among alternatives for each module. As objective function of the models is

to maximize quality within a budgetary constraint and standard quality assurance (QA) methodologies

cuts maintenance costs. Increase reliability, and reduces cycle time for new distribution modelling

system [6].

 Holmqvist and Karlsson, The purpose of this work to improve the quality of software testing in a

large company developing real-time embedded system. Software testing is a very important part of

software development. By performing comprehensive software testing, the quality and validity of a

software system can be assured. One of the main issues with software testing is to be sure that the

tests are correct. Knowing what to test, but also how to perform testing, is of utmost importance. This

thesis explores different ways to increase the quality of real-time testing by introducing new

techniques in several stage of the software development model. The proposed methods are validated

by implementing them in an existing and completed project on a subset of the software development

process [7].

III. SOFTWARE QUALITY EVALUATION

Software quality directly affects the application and maintenance of software, so how to objectively

and scientifically evaluate software quality becomes the hot spot in software engineering field.

Software quality evaluation involves the following tasks throughout software life cycle and based on

software quality evaluation standard, which is implemented during software development process:

continuously measure software quality throughout software development process, reveal current status

of software, predict follow up development trend of software quality, and provide effective means for

buyer, developer and evaluator. A set of evaluation activities may generally include review, appraisal,

test, analysis and examination, etc. Performance of such activities is aimed to determine whether

software products and process is consistent with technical demands, and finally determine products

quality. Such activities will change the phase of development, and may be performed by several

organizations. A set of evaluation activities may be generally defined in the software quality

specifications of project plan, special project, as well as related software quality specifications [8].

International Journal of Advances in Engineering & Technology, Nov 2011.

©IJAET ISSN: 2231-1963

238 Vol. 1, Issue 5, pp. 236-247

IV. SOFTWARE PERFORMANCE ANALYSIS

For software qualification, it is highly desirable to have an estimate of the remaining errors in a

software system. It is difficult to determine such an important finding without knowing what the

initial errors are. Research activities in software reliability engineering have been studied over the past

30 years and many statistical models and various techniques have been developed for estimating and

predicting reliability of software and numbers of residual errors in software. From historical data on

programming errors, there are likely to be about 8 errors per 1000 program statements after the unit

test. This, of course, is just an average and does not take into account any tests on the program [9].

4.1 Time complexity

Important factors in measuring the efficiency or effectiveness of any algorithm is the amount of

(execution time), the time it takes for the implementation of the algorithm. There are no simple rules

to determine the time, so let us go to (appreciation prior) for the execution time using some of the

mathematical techniques after knowing a number of important factors relating to the issue addressed

by the algorithm. Identify the function that determines the expected time for implementation,

depending on some variables related to the steps of the algorithm, suppose that the algorithm includes

the following statement [10].

 X=X+1;

Here we must account for the amount of time required to execute this statement alone, and then must

know the frequency of implementation of the so-called (frequency Count). It differs according to the

sample data and by multiplying the amounts in (the time of the statement and the amount of

frequency) we get the Total Execution Time expected.

That calculation time of implementation of all instruct with the required accuracy of the information is

needed for:

• Type of computer hardware that implement the algorithm.

• The programming language used in the computer.

• Time of implementation of all instruct.

• Kind of translator or interpreter.

Possible to know that information to choose a machine (computer) fact or definition of a computer by

default, and in both cases, the calculated time may not be accurate and appropriate for a number of

computers or any computer, as the language interpreter may vary from one computer to another as

well as other factors. These considerations make us focus our appreciation in advance of the execution

time on the number of iterations of code phrases directives. Take the following three examples:

………. for(i=1;i<=n; i++) for(i=1;i<=n; i++)

 .……... ………. .………

 ……… ………. ………..

for (J=1;J<=n; J++) ………. X=X+1

 ……… X=X+1; ………

 ………. …….… ………

 X=X+1; ………. ………

 (C) (B) (A)

In the example (A)

That is a combination(X=X+1) not contained within any iterative formula, that the number of

times executed (frequency Count=1).

In the example (B): A combination of repeated (n) times.

In the example (C): A combination of repeated (n
2
) times.

International Journal of Advances in Engineering & Technology, Nov 2011.

©IJAET ISSN: 2231-1963

239 Vol. 1, Issue 5, pp. 236-247

If we assume (n = 10), these frequencies are (1, 10, 100), and this corresponds to ride a bicycle, riding

a car, boarding a plane compared to the distance that will be interrupted by each vehicle per unit

time (hour, for example) and here we use the expression (order of magnitude of algorithm) means

the frequency of implementation of the phrase. The term (order of magnitude of a statement) sum of

all iterations terms under which the executive and the assessment pre-determined execution time.

The example above shows that the algorithm (A) is the fastest implementation of the algorithm (B)

and in turn faster than (C).

Example: We have a matrix (A) dimensions (n * n) is required to sum each row and store it in the

matrix to the other was (sum) and then calculate the sum total of the components of the matrix (A).

Can be the solution in two ways.

The first way:

Grandtotal=0;

for(i=1;i<=n; i++)

{

Sum[i]=0;

for(j=1;j<=n; j++)

{

Sum[i]=Sum[i]+A[i][j];

Grandtotal= Grandtotal+ A[i][j];

}

}

The second way:

Grandtotal=0;

for(i=1;i<=n; i++)

{

Sum[i]=0;

for(j=1;j<=n; j++)

{

Sum[i]=Sum[i]+A[i][j];

}

Grandtotal= Grandtotal+ Sum[i];

}

We note here that the number of the first algorithm (2N2) is greater than the number of the second

algorithm (N2+ N), so the first take longer than the second.

The following discussion considers the various statement types that can appear in a program and state

the complexity of each terms of the number of steps [10]:

• Declarative Statement: these count as zero steps as these are no executable.

• Comment: these count as zero steps as these are no executable.

2N additions

This cycle is

repeated (N)

of times

Total collection=2N*N=2N
2

N

additions

N2 additions

N

additions

Total collection=N+ N
2

International Journal of Advances in Engineering & Technology, Nov 2011.

©IJAET ISSN: 2231-1963

240 Vol. 1, Issue 5, pp. 236-247

• Expression and Assignment Statement: most expression has a step count of one. The

exceptions are expressions that contain function calls. In this case, we need to determine the

cost of invoking the function.

• Iteration statements: this class of statement includes the (for, while and Do….while)

statement. We shall consider the step counts only for the control part of these statements. The

step count for each execution of control part of a for statement is one.

• Switch statement: This statement consist of a header followed by one or more sets of

condition and statement pairs. The cost of header switch expression is given a cost equal to

that assignable to expression. The cost of the each following condition statement pair is the

cost of this condition plus that of all preceding conditions plus that of this statement.

• If –Then–else Statement: It consists of three parts:

If (exp)

Statement1 {block of statements}

else Statement2 { block of statements}

Each part is assigned the number of steps corresponding to <exp>, <Statement2>, <

Statement2 >, respectively. Note that if the else clause is absent, then no cost is assigned to it.

• Function invocation: All invocation of procedures and function count as one step unless the

invocation involves value parameters whose size depend on the instance characteristics.

• Function statements: these count as zero step as their cost has already been assigned to the

invoking statement.

4.2 Reliability

There is no doubt that the reliability of a computer program is an important element of its overall

quality. If a program repeatedly and frequently fails to perform, it matters little whether other software

quality factors are acceptable.

Software reliability, unlike many other quality factors, can be measured directed and estimated using

historical and developmental data. Software reliability is defined in statistical terms as "the probability

of failure-free operation of a computer program in a specified environment for a specified time". To

illustrate, program X is estimated to have a reliability of 0.96 over eight elapsed processing hours. In

other words, if program X were to be executed 100 times and require eight hours of elapsed

processing time (execution time), it is likely to operate correctly (without failure) 96 times out of 100.

Whenever software reliability is discussed, a pivotal question arises: What is meant by the term

failure? In the context of any discussion of software quality and reliability, failure is non-

conformance to software requirements. Yet, even within this definition, there are gradations. Failures

can be only annoying or catastrophic. One failure can be corrected within seconds while another

requires weeks or even months to correct. Complicating the issue even further, the correction of one

failure may in fact result in the introduction of other errors that ultimately result in other failures [11].

4.3 Modularity

Modular programming is subdividing your program into separate subprograms such as functions and

subroutines. For example, if your program needs initial and boundary conditions, use subroutines to

set them. Then if someone else wants to compute a different solution using your program, only these

subroutines need to be changed. This is a lot easier than having to read through a program line by line,

trying to figure out what each line is supposed to do and whether it needs to be changed. And in ten

years from now, you yourself will probably no longer remember how the program worked.

Subprograms make your actual program shorter, hence easier to read and understand. Further, the

arguments show exactly what information a subprogram is using. That makes it easier to figure out

whether it needs to be changed when you are modifying your program. Forgetting to change all

occurrences of a variable is a very common source of errors. Subprograms make it simpler to figure

out how the program operates. If the boundary conditions are implemented using a subroutine, your

program can be searched for this subroutine to find all places where the boundary conditions are used.

International Journal of Advances in Engineering & Technology, Nov 2011.

©IJAET ISSN: 2231-1963

241 Vol. 1, Issue 5, pp. 236-247

This might include some unexpected places, such as in the output, or in performing a numerical check

on the overall accuracy of the program.

Subprograms reduce the likelihood of bugs. Because subprograms can use local variables, there is less

change that the code in the subroutine interferes with that of the program itself, or with that in other

subprograms. The smaller size of the individual modules also makes it easier to understand the global

effects of changing a variable [12].

4.4 Documentation

The system test also is concerned with the accuracy of the user documentation. The principle way of

accomplishing this is to use the documentation to determine the representation of the prior system test

cases. That is, once a particular stress case is devised, you would use the documentation as a guide for

writing the actual test case. Also, the user documentation should be the subject of an inspection

(similar to the concept of the code inspection), checking it for accuracy and clarity. Any examples

illustrated in the documentation should be encoded into test cases and fed to the program [13].

V. PROPOSED ALGORITHMS FOR EVALUATION

To see if the programmatic product has a quality or not. There must be a standards assessment

describes the programmatic product. In the software evaluation a mathematical models were used

which are easy to measure and on that basis the values of four measures of the software is evaluated

(Time complexity, Reliability, Modularity, Documentation). The next will explain each measure

separately.

5.1. The Time complexity
Measurement of time is the time of performance, operating, or the so-called the execution time.

Measuring the time adopted several measures to measure the execution time of software, as described

in the chapter three, on which found the evaluation. The following algorithm describes the steps for

finding the time:

Algorithm 1 Time complexity measures of program.

Input: Text file of the program.

Output: Report of the Time complexity program.

Step1: - Read Text file.

Step2: - Determine (Len � Length of text file).

• Let t is two-dimension array

• k =0, is pointer on current state

Step3: - for (i =1; i < Len; i++).

Step4: - Determine (aa � Token).

Step5: - Check aa

- Case aa= "}" then

- if (t[0, k] == 1) then

- t[1, k - 1] = t[1, k - 1] + t[1, k];

- if (t[0, k] == 2) then

- t[1, k - 1] = t[1, k - 1] + (t[1, k] * n);

Else

- k = k + 1;

- t[1, k] = 0;

- k = k - 1;

- Case aa = "for" OR aa= "while" OR aa= "do" then

 - k = k + 1;

- t[0, k] = 2

- while (aa != "{")

 - i = i + 1;

 - i = i - 1;

International Journal of Advances in Engineering & Technology, Nov 2011.

©IJAET ISSN: 2231-1963

242 Vol. 1, Issue 5, pp. 236-247

- Case aa = "{" then

- if (t[0, k] != 2)

- k = k + 1; t[0, k] = 1;

- Case aa = ";" then

- t[1, k] = t[1, k] + 1

• End

Example:

#include <iostream.h>
// sequence is 0, 1, 1, 2, 3, 5, 8, 13, ...

int fib (int i)

{

 int pred, result, temp;

 pred = 1;

 result = 0;

 while (n > 0)

 {

 temp = pred + result;

 result = pred;

 pred = temp;

 n = n-1;

 }

 return(result);

}

int main ()

 {

 int n;

 cout << "Enter a natural number: ";

 cin >> n;

 while (n < 0)

 {

 cout << "Please re-enter: ";

 cin >> n;

 }

 cout << "fib(" << n << ") = " << fib(n) << endl;

 return(0);

}

It is easy to see that in the for loop the value of count will increase by a total of 6n. If count is zero to

start with, then it will be 6n+9 on termination. So each invocation of sum execution a total of 6n+9

steps.

5.2. The Reliability Measure
To get on the reliable software must be reaching the number of errors in the programs to the lowest

value as well as the loss the negative results which are resulting from them to the lowest level as

possible. Where the first attempts to build the quality standards of the software went about the

reliability of the programmatic product. The reason is the clarity of this attribute and easily measured

as related to probability of failure for career and illnesses that occur in the software system during the

operating effective for a long time. The reliability measuring was based on the two types of

mathematical errors a division by zero and a negative value under the root, the following algorithm

will show the reliability measurement:

Algorithm 2 Reliability measures of program.

Input: Text file of the program.

Output: Report of the reliability program.

Step1: - Read Text file.

Step2: - Determine (Len � Length of text file).

Step3: - for (i =1; i < Len; i++).

International Journal of Advances in Engineering & Technology, Nov 2011.

©IJAET ISSN: 2231-1963

243 Vol. 1, Issue 5, pp. 236-247

Step4: - Determine (aa � Mathematical expression).

Step5: - Check aa

- Case aa[i]= "/" or aa[i]= "%" then

- n = i+1

- while (n != ";" OR n != ")") then

- If (aa[n] !="0") then

- n =n+1

endwhile

Step6: - " The program is not Reliability ".

 Else

"The program is Reliability ".

Step7: - Case aa[i]= " sqrt " then

 - n=i+1; while (n!=")") then

 - if (aa[n] != "-") then

 - n=n+1; endwhile

 - Repeat Step6.

• End.

5.3. The Modularity Measure
Most programs consist of number of functions which are called when they are needed. The function

is a set of instructions that can be called from anywhere in the main function to perform a specific

task. The sub-functions (sub-programs) are characterized by have the same general structure of the

main function in terms of defining variables and writing instructions. Among the benefits of the use

of sub-functions, to simplify the problem to be solved and this by divided it in to a partial tasks (sub-

functions). In some cases, the program will repeat a section or more the number of times, so the sub-

programs (sub-functions) helps to reduce these repetitions by call this section each time by one step

only. Evaluation has been adopted based on the number of existing functions, as explained in the

following algorithm:

Algorithm 3 Modularity measures of program.

Input: Text file of the program.

Output: Report of the modularity program.

Step1: - Read Text file.

Step2: - Determine (Len � Length of text file).

Step3: - for (i =1; i < Len; i++)

 - Count=0,number to the Expressions reserved.

Step4: - Determine (aa � Expressions reserved).

Step5: - Check aa

- if (aa= " void " or aa= " return ") then

- Count=Count + 1

- EndIf

Step5: - if (Count = 0) then

" The program is not modularity ".

Else

if (Count = 1) then

" The program is medium modularity ".

Else

if (Count >= 2) then

" The program is High modularity ".

• End.

5.4. The Documentation Measure
The Documentation is an important stage of building the software system. It is documents the internal

construction of the program for the purpose of maintenance and development. Without documentation

the stage of programs factory no longer able to follow-up their maintenance and development. Which

/* "/" is Division in C++ and "%" is Mod in C++

// "sqrt" is root in C++

International Journal of Advances in Engineering & Technology, Nov 2011.

©IJAET ISSN: 2231-1963

244 Vol. 1, Issue 5, pp. 236-247

increases the financial cost and time for that program to the limits of unexpected or in other words, the

failure to build software with high quality and long life cycle.

There is more than one way to documentation. For example, the programmer documentation is

possibility to add comments within the software code. The analyst documentation during it the

personal documents to explain the program cycle and the laboratory system documentation in which

the points imbalance in the program are recorded. In this work the programmer documentation is

adapted. Following algorithm describes the ratio of documentaries:

Algorithm 4 Documentation measures of program.

Input: Text file of the program.

Output: Report of the Documentation program.

Step1: - Read Text file.

Step2: - Determine (Len � Length of text file).

Step3: - for (i =1; i < Len; i++).

 - Count=0, number of Symbolic expressions.

Step4: - Determine (aa � Symbolic expressions).

Step5: - if (aa [i] = "//" or aa [i] = "*/") then

Count=Count + 1

EndIf

Step6: - if (Count = 0) then

" The program is not Documentation ".

Else

if (Count = 1) then

" The program is medium Documentation".

Else

if (Count >= 2) then

" The program is High Documentation".

• End.

VI. EXPERIMENTAL RESULTS

Implementation of the proposed evaluation algorithm on program written in c++ language in text file

Appendix A, using mathematical analysis of these program. In this paper, evaluated six program by

using four measures (time complexity, reliability, modularity, documentary)

See appendix A include some sections of code used to implement the algorithm.

In the Table 1 notes the ratio of evaluations of software in accordance with QA standards adopted for

each program: the time complexity, reliability, modularity and documentation, the evaluation found

using mathematical models.

The results after the implementation, the prog.2 was the highest rate of the time complexity, the

prog.6 was the lowest time complexity. Clear that the programs (prog.4) from an arithmetic error and

consequently appear that they are not reliability.

Table 1. Evaluate of Software

Documentation Modularity Reliability
Time

Complexity

Name of

program

The program is highly

documented
The program is high

Modular
The program is

reliable

333 prog.1

The program is highly

documented
The program is high

Modular
The program is

reliable

2872 Prog.2

The program is medium

documented
The program is high

Modular

The program is

reliable

49 prog.3

The program is highly

documented

The program is high

Modular

The program is not

reliable

21 prog.4

// "//" & "/*" is refer to Document in C++

International Journal of Advances in Engineering & Technology, Nov 2011.

©IJAET ISSN: 2231-1963

245 Vol. 1, Issue 5, pp. 236-247

The program is highly

documented
The program is medium

Modular

The program is

reliable

39 prog.5

The program is medium

documented

The program is medium

Modular

The program is

reliable

14 prog.6

VII. CONCLUSIONS

The study aimed to shed light on the concept of TQM in the evaluation of software by discussing the

different intellectual visions that dealt with the overall quality standards and models. Mathematical

analysis was used for evaluation depending on the standard model to evaluate the programs adopted

this model to four measures of evaluation. Also the time it takes for the implementation of the

algorithm there are no simple rules to determine the time, so the execution time using some of the

mathematical techniques after knowing a number of important factors.

Reliability depends on conceptual correctness of algorithms, and minimization of programming

mistakes, such as logic errors (such as division by zero or off-by-one errors).Modular benefits of the

use of sub-functions, to simplify the problem to be solved and this by divided it in to a partial tasks

(sub-functions).Using documentation as a guide for writing the actual test case, checking it for

accuracy and clarity. In the future we can use other linear models to evaluate the software and we can

dealing with software to test those which are more complex..

Appendix A:

Multiplying a vector by a square matrix many times

#include <iostream<

#include <iomanip<

#include <fstream<

#include <cmath<

using namespace std;

void mat vec (int, double[][50], double[], double[])

int main()

}

int n, i, j, norm;

double b[50],c[50],a[50][50];

cout << endl;

cout << " Normalize the vector after each projection?" << endl;

cout << " Enter 1 for yes, 0 for no" << endl;

cout << " -------------------------" << endl;

cin >> norm;

//--- Read the matrix and the vector:

ifstream input data;

input data.open("matrix v.dat");

input data >> n;

.

.

.

.

.

.

.
for (i=1;i<=n;i++)

}

b[i]=c[i];

{

if(norm == 1)

}

double rnorm = 0;

for (i=1;i<=n;i++)

International Journal of Advances in Engineering & Technology, Nov 2011.

©IJAET ISSN: 2231-1963

246 Vol. 1, Issue 5, pp. 236-247

}

rnorm = rnorm + b[i]*b[i];

{

rnorm = sqrt(rnorm);

for (i=1;i<=n;i++)

}

b[i]=b[i]/rnorm;

{

{

cout << " Projected vector at stage: " << icount;

cout << "\n\n";

for (i=1;i<=n;i++)

}

cout << setprecision(5) << setw(10);

cout << b[i] << endl;

{

icount = icount+1;

cout << " One more projection? "<< endl;

cin >> more;

{

return 0;

{

*/ ---

function mat vec performs matrix-vector

multiplication: c i = a ij b j

 --/*

void mat vec (int n, double a[][50], double b[], double c([]

}

int i, j;

for (i=1;i<=n;i++)

}

c[i] = 0;

for (j=1;j<=n;j++)

}

c[i] = c[i] + a[i][j]*b[j];

{

{

{

Time complexity 333

Reliability The program is Reliability

Modularity The program is highly Modularity

Documentation The program is highly documented

for (int i = 0; i < len; i++)

 {

 if (aa.Substring(i, 1) == "}")

 {

 if (t[0, k] == 1)

 t[1, k - 1] = t[1, k - 1] + t[1, k];

 else

 if (t[0, k] == 2)

 t[1, k - 1] = t[1, k - 1] + (t[1, k] * n);

 else

 k = k + 1;

 t[1, k] = 0;

 k = k - 1;

 }

else

International Journal of Advances in Engineering & Technology, Nov 2011.

©IJAET ISSN: 2231-1963

247 Vol. 1, Issue 5, pp. 236-247

if ((aa.Substring(i, 3) == "for") || (aa.Substring(i, 5) == "while") || (aa.Substring(i, 2) == "do"))

{

 k = k + 1;

 t[0, k] = 2;

 while (aa.Substring(i, 1)!="{")

 { i = i + 1;

}

REFERENCES

[1] Michael R. Bussieck, Steven P. Dirkse, Alexander Meeraus and Armin Pruessner, "Software Quality

Assurance for Mathematical Modeling system ", Springer 2005.

[2] Yang Aimin and Zhang Wenxiang, "Based on Quantification Software Quality Assessment Method",

Computer and Information Technology College, Zhejiang Wanli University , Ningbo, CHINA,

JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009.

[3] Bryan O’Connor, "Software Assurance Standard Nasa Technical Standard", NASA-STD-8739.8

w/Change 1, July 28, 2004.

[4] Yujuan Dou, "Software Quality Assurance Framework (SQA)", 2008/11/28.

[5] Stefan Wagner, Florian Deissenboeck, and Sebastian Winter, " Managing Quality Requirements

Using Activity Based Quality Models", Institute for Informatics Technische University Munchen

Garching b. Munchen, Germany, ISBN: 978-1-60558-023-4, 2009.

[6] Manju Lata and Rajendra Kumar, "An Approach to Optimize the Cost of Software Quality Assurance

Analysis", Dept. of Compute Science & Engg, International Journal of Computer Applications (0975 –

8887), Volume 5– No.8, August 2010.

[7] Holmqvist J. and Karlsson K., "Enhanced Automotive Real-TimeTesting through Increased

Development Process Quality", (2010).

[8] Yang Aimin and Zhang Wenxiang, "Based on Quantification Software Quality Assessment Method",

Computer and Information Technology College, Zhejiang Wanli University , Ningbo, CHINA,

JOURNAL OF SOFTWARE, VOL. 4, NO. 10, DECEMBER 2009.

[9] Pham H, "Software Reliability", a chapter in Wiley Encyclopedia of Electrical and Electronic

Engineering, Wiley: pp 565-578, 2000.

[10] Essam al-Saffar, "data structures", Faculty of Rafidain University, Department of Computer, Baghdad

2001.

[11] Roger S. Pressman, "Software Engineering", Software engineering: a practitioner’s approach, Ph.D.

thesis, ISBN 0-07-365578-3,2001.

[12] http://www.eng.fsu.edu/~dommelen/courses/cpm/notes/progreq/

[13] Glenford J. Myers, "The Art of Software Testing", John Wiley & Sons, Inc., 2004.Study ",ICGST-

GVIP,ISSN 1687-398X,Volume (8),Issue (III),India, October 2008.

Authors

Murtadha Mohammad Hamad received his MSc degree in computer science from

University of Baghdad, Iraq. , in 1991, received his PhD degree in computer science from

University of Technology in 2004, and received the Assist Prof. title in 2005. Currently, he

is a dean of College of Computer, University of Anbar. His research interested includes

DataWarehouse, Software Engineering, and Distributed Database.

Shumos Taha Hammadi graduated from the College of Computer Department of

Computer Science University of Anbar, Iraq. Currently, she is master student in the end of

research phase.

