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ABSTRACT 

It is well known that TCP has formed the backbone of the Internet stability and has been well tuned over 

years. Today the situation has changed, that is because the internetworking environment become more 

complex than ever, resulting in changes in TCP congestion control are produced and still in progress.  In this 

paper we use an analytic fluid approach in order to analyze the different features of slow start, traditional 

swift start, and modified swift start algorithms. We then use simulations to confirm our analytic results which 

are promising enough. 

KEYWORDS: TCP, congestion control, Slow Start and Swift Start algorithms, high-speed networks, long-

delay bandwidth product networks. 

I. INTRODUCTION 

Since more than three decades Cerf and Kahn have been initiated in their paper [1] the first work of 

Transmission Control Protocol (TCP), which originally defined in RFC 793 [2]. However, when a 

TCP connection is opened and data transmission starts, TCP uses an algorithm known as slow start to 

probe the network to determine the available capacity over the connection’s path. It is well known that 

the TCP is responsible for detecting and reacting to overloads in the Internet and has been the key to 

the Internet’s operational success in the last few decades. However, as link capacity grows and new 

Internet applications with high-bandwidth demand emerge, TCP’s performance is unsatisfactory, 

especially in high-speed and long-distance networks. In these networks TCP underutilizes link 

capacity because of its conservative and slow growth of congestion window. The congestion window 

governs the transmission rates of TCP [3]. TCP is often blamed that is cannot use efficiently network 

paths with high Bandwidth Delay Product (BDP). The BDP is of fundamental importance because it 

determines the required socket buffer size for maximum throughput [4]. 

The basic implementations of TCP are based on Jacobson's classical slow start algorithm for 

congestion avoidance and control [5,6]. A number of solutions have been proposed to alleviate the a 

aforementioned problem of TCP by changing its congestion control algorithm  such as BIC-TCP [7], 

congestion control [8], CUBIC [9], FAST [10], HSTCP [11], H-TCP [12], LTCP [13], STCP [14], 

TCP-Westwood [15], TCP-Africa [16], fast retransmit, fast recovery [17-20],  the new Reno 

Modification to TCP fast recovery algorithm [21], and Increasing TCP's Initial Window [22] which 

was evaluated in [23]. All these enhancements were added to TCP congestion control and others are 

still in progress to avoid unnecessary retransmissions and to enhance the connection efficiency 

without altering the fundamental underlying dynamics of TCP congestion control [24]. Other 

congestion control algorithms were suggested for TCP such as the delay-based approach for 

congestion avoidance [25] and explicit congestion notification (ECN) [26,27]. 
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Technology trends indicate that the future Internet will have a large number of very high bandwidth 

links such as fiber links, and very large delay satellite links. These trends are problematic because 

TCP reacts adversely to increases in bandwidth or delay.  Mathematical analysis of current slow start 

TCP congestion control algorithms reveals that, as the delay-bandwidth product increases, TCP 

bandwidth utilization decreases especially for large delay links. So many other congestion control 

algorithms were suggested to enhance the performance of TCP of high delay-bandwidth product 

network such as Fast TCP [18-21], TCP Fast Start [22], Explicit Control Protocol (XCP) [23], High 

Speed TCP [24], Quick-Start for TCP and IP [25] and others. 

II. BACKGROUND 

F. J. Lawas-Grodek and Diepchi T. Tran have tested the results of the Swift Start algorithm in single-

flow and multiple-flow test beds under the effects of high propagation delays, various bottlenecks, 

and small queues sizes. Also, they’ve estimated the capacity and implements packet pacing; the 

results were that in a heavily congested link, the Swift Start algorithm would not be applicable. The 

reason is that the bottleneck estimation is falsely influenced by timeouts included by retransmissions 

and the expiration of delayed acknowledgment (ACK) timers, the causing their modified Swift Start 

code to fall back to regular TCP [28]. In the previous work [29-32], we’ve modified the traditional 

(original) Swift Start algorithm [33,34] to overcome its drawbacks. However, the modified Swift Start 

algorithm results have confirmed its succeed in improving the start up connection by quickly 

estimating to the available bottleneck rate in the connection path, and its performance does not 

affected when using Delayed Acknowledgment or acknowledges compression. 

III. SLOW START OVER LONG DELAY-BANDWIDTH PRODUCT 

NETWORKS 

Recently there are some researches investigate the congestion control and long delay bandwidth 

product such as [35-44]. To determine the data flow, the Slow Start TCP uses two main variables, the 

first is the Congestion Window (CWND) in which the sender-side is limit on the amount of data, and 

can transmit into the network before receiving an ACKnowledgment (ACK), the second is the 

Receiver's advertised window (RWND) in which the receiver-side is limit on the amount of 

outstanding data.  The minimum of CWND and RWND governs data transmission.  Another state 

variable is the Slow Start threshold (SSTHRESH), which is used to determine whether the Slow Start 

or congestion avoidance algorithm is used to control data transmission. When a new connection is 

established with a host, the congestion window is initialized to a value that is called Initial Window 

(IW), it equals to one segment. Each time an ACK is received; the CWND is incremented by one 

segment. So TCP increases the CWND by percentage of 1.5 to 2 each Round Trip Time (RTT). The 

sender can transmit up to the minimum of the CWND and the RWND. When the congestion window 

reaches the SSTHRESH the congestion avoidance should starts to avoid occurrence of congestion. 

The congestion avoidance increases the CWND when receiving an ACK according to equation 1. 

 

CWND + = SMSS x SMSS/CWND    …………… (1) 

 

Where: SMSS is the sender maximum segment size. 

CP uses Slow Start and congestion avoidance until the CWND reaches the capacity of the connection 

path, and an intermediate router will start discarding packets. Timeouts of these discarded packets 

informs the sender that its congestion window has gotten too large and congestion has been occurred. 

At this point TCP reset CWND to the IW, and the SSTHRESH is divided by two and the Slow Start 

algorithm starts again. However, there are many researches have been done such as fast retransmit; 

fast recovery [17-20], the New Reno Modification to TCP fast recovery algorithm [21], and 

increasing TCP's Initial Window [22] were added to TCP congestion control. The current 

implementations of Slow Start algorithm   are suitable for common link which has low-delay and 

modest-bandwidth. That takes a small time to correctly estimate and begin transmitting data at the 

available capacity. Meanwhile, over long delay-bandwidth product networks, it may take several 

seconds to complete the first Slow Start and estimate available path capacity.  



International Journal of Advances in Engineering & Technology, Sept 2011. 

©IJAET                                                                                                          ISSN: 2231-1963 

75 Vol. 1, Issue 4, pp. 73-85 
 

IV. SWIFT START ALGORITHM 

The Swift Start algorithm was proposed to improve the TCP connection startup by quickly estimating 

the path bottleneck capacity and so the congestion window by using packet pair algorithm [45] and 

using packet pacing [46] to spread out the congestion window over RTT to avoid router buffers over 

flow. In this algorithm, the TCP connection starts with four-segment (IW = 4) which are sent in burst. 

However, when the acknowledgements of the segments are received, the sending TCP uses the packet 

pair algorithm to calculate the bottleneck capacity as follow:  

 

BW = ∆t x SegSize                     …………… (2) 

Capacity = BW x RTT       …………… (3) 

 

Where: ∆t is the time delay between the arrival time of the acknowledgment of the first and second 

segment. Also the sending TCP uses pacing to spread the packets over the RTT. 

However, the Swift Start can not work properly when combing it with some other techniques such as 

Delayed Acknowledgment DACK [47, 48] which is used in mostly all TCP implementations to 

reduce the number of pure data less acknowledgment packets sent by the receiver. DACK states that 

the TCP receiver will only send data less acknowledgment for every other received segment. If no 

segment is received within a specific time, the data less acknowledgment will be sent.  The DACK 

algorithm will directly influence packet pair estimation, because the ACK is not sent promptly, but it 

may be delayed some time within the receiver, not due to congestion, so the sender can not correctly 

estimate the available bandwidth. Another problem facing Swift Start is the acknowledgment 

compression [49, 50], which causes the ACKs to be bunched up in the network path from the data 

receiver to the data sender. This compression will decrease the time gap between the ACKs which 

will lead to bandwidth over estimation. The third problem with Swift Start is that the employing 

packet pair algorithm does not take in account the delay that faces acknowledges in the reverse path. 

However, to overcome the three drawbacks mentioned above, a simple modification is considered to 

the original Swift Start algorithm [29-32] which is compared with other congestion control 

algorithms.  

4.A. The Modified Swift Start Algorithm 

The Modified Swift Start (MSS) algorithm aims to avoid drawbacks with the original Swift Start 

algorithm by modifying the packet pair algorithm, the idea behind the modification is that instead of 

time depending on the interval between the acknowledgments that may cause errors, it will use the 

time between the original messages which will be calculated by the receiver when the original 

messages arrive it, and then the receiver sends these information to the source when acknowledging it. 

The sender starts the connection by CWND = 4 segment, these packets are send in form of pairs, and 

identifies the first and the second segment of each pair by First/Second (F/S) flag. When the receiver 

receives the first message, it will record its sequence number and its arrival time, and it will send an 

acknowledgment on this message normally according to its setting. When it receives a second one, it 

will check whether this is the second for the recorded one or not, if it is the second for the recorded 

one, the receiver will calculate the interval ∆t between the arrival time of the second one and the first 

one  using the following equation :-  

 

∆t = t_seg1 – t_seg2         µ sec       …………… (4) 

 

where:  t_seg1 and t_seg2 are the arrival time of the first and second segments respectively. However, 

when the receiver sends the second segment’s acknowledgment, it will insert the value of ∆t into the 

transport header option field. The sender’s TCP will extract ∆t from the header and calculate the 

available bit rate BW by using the above equation (2). 

4.B. How does the Modified Swift Start Overcome the Drawbacks? 

If the receiver uses the DACK technique, it will record the first segment arrival time and wait for 

another segment, when it receives the second one it will calculate ∆t, and whenever it sends an 

acknowledgment, it will send ∆t along with it. However, the DACK dos not affect the calculation of 
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∆t. Also acknowledgment compression will not affect the calculation of ∆t, because ∆t is the time gab 

between the data segment itself. If ACKs face a delay in the reverse path, this delay will not affect ∆t. 

because ∆t is carried explicitly with in the header and not in the time delay between ACKs. However, 

error sources are avoided and the estimated capacity is the actual capacity without neither over 

estimation nor under estimation. 

4.C. Mathematical Analysis 

The purpose of the mathematical analysis is to drive a mathematical model to estimate the throughput 

of the transmission for both MSS (Modified Swift Start) and Slow Start.  Since MSS is used to 

enhance the connection startup, so we would be interest in the slow start phase of the connection, and 

the difference between the slow start and the MSS in this phase.  

 

 
 

Figure 1: Topology of the network model 

 

Figure 1 shows the topology of the network model that we’ve used to implement the mathematical 

analysis. The analysis based on the model driven in [51]. In this analysis we will ignore the 3-way 

handshaking, and we assume that RTT is constant for simplicity. This assumption is used in many 

researches specially when working in long delay paths, in which queuing delay is very small with 

respect to propagation delay see [52-54]. The following parameters are used in the analysis. 

 

CWNDi the congestion window at the ith RTT. 

CWND1  the initial congestion window  

b   is a parameter depends on the use of DACK where b=1 if DACK is disabled and b=2 if 

DACK is enabled 

γ              = 1+1/b 

dn          the number of data segments sent in the interval form 0 to n *RTT   

B       The throughput which is the amount of data sent in a certain time interval from 0 to    n* RTT. 

C         the bottleneck capacity in Bit/sec. 

S The segment size. We assume that all    segments have the same length, this happens when 

the sender always has a data to send. 

4.D. Slow Start Analysis 

In slow start phase    

CWND i+1 = CWND i + CWND i / b 

CWND i+1 = (1+1/b) * CWND i  

CWNDi+1 = γ CWNDi 

 
CWNDi = γi-1 * CWND1 

 

Let N be the RTT in which the congestion window is CWND    

N = 








1CWND

CWND
Log γ  + 1            …………… (1) 
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Let N (d) be the number of RTT needed to send d segments  
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Equation (5) was driven in [40]. 

 

B (n) = dn/ (n * RTT) 
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Let Ns be the number of RTT in which the CWIND reaches the SSTHRESH. 

Ns= 1log
1
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In the slow start phase n is the number of RTT for CWND to reach the SSTHRESH. 

The amount of data sent before reaching the SSTHRESH will be 

B(SSTHRESH) = 
  s * RTT

s

N

d sthresh  

where: dssthresh  is the number of segments sent until the congestion window reaches SSTHRESH 

From ……equation (4) 

dssthresh  =  
1

     s*
  1

−

−
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When tn > Ts  

 

CWNDi+1 = CWNDi + 1/ CWNDi 

4.E. Modified Swift Start 

In case of modified swift start let CWND1 is the initial congestion window and the inter arrival delay 

between the two packets arriving the receiver is τ, the segment size is S. So, after the first RTT 

CWND will be  

 

CWND2 = RTT / τ 

 

Then the TCP will use the slow start to increase the congestion window so: In the model of Figure 1, 

τ = frame length / C  For PPP connections the frame length equals to  S + IP_header_length + 

frame_header_length 

 

τ = 8 * (S+27) / C  
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
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For RTT/τ ≤ SSTHRESH. 

  

This condition is to grant that the connection is in slow start. Because if RTT/τ > SSTHRESH the 

congestion avoidance will start, and the slow start time in this case is only one RTT. 
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From equation (10), the number of RTTs needed to send d segments is 
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V. SIMULATION AND RESULTS. 

The Modified Swift Start model has been implemented using Opnet modeler [55], to compare the 

performance results with that of the original swift start and the slow start in deferent network 

conditions of bandwidth and path delay. The comparison between them implemented using a single. 

5.A Single Flow  

5.A.a) Low  Delay-Bandwidth Product Networks 

The network model shown in Figure 1 implemented to study the performance of swift start TCP and 

compare it with the traditional (original) swift start and the slow start using single flow between the 

sender and the receiver. The sender uses FTP to send a 10 MB file to the receiver. The TCP 

parameters of both the sender and the receiver are shown in Table-1. In the simulation both the sender 

and the receiver uses DACK. This configuration has been used to study the difference between the 

original and modified swift start. The sender and the receiver are connected to the routers through a 

100 Mbps Ethernet connections. 

                           Table-1 TCP Parameters of the sender and receiver 

Maximum Segment Size 1460 Bytes 

Receive Buffer 100000 Bytes 

Delayed ACK Mechanism Segment/Clock Based 
Maximum ACK Delay 0.200  Sec 
Slow-Start Initial Count 4 

Fast Retransmit Disabled 
Fast Recovery Disabled 

Window Scaling Disabled 
Selective ACK (SACK) Disabled 
Nagle's SWS Avoidance Disabled 

Karn's Algorithm Enabled 
Initial RTO 1.0 Sec 

Minimum RTO 0.5  Sec 
Maximum RTO 64  Sec 

RTT Gain 0.125 
Deviation Gain 0.25 

RTT Deviation Coefficient 4.0 
Persistence Timeout 1.0 Sec 
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Both of the routers are CISCO 3640 with forwarding rate 5000 packets/second and memory size 265 

MB. The two routers are interconnected with point to point link that link is used as a bottleneck by 

changing its data rate; also the path delay is controlled using this link.  

Figure 2 shows the simulation and the analytical results of the congestion window for slow start TCP, 

traditional and Modified swift start TCP when the bottleneck data rate is 1.544 Mbps (T1) and the 

path RTT is 0.11674 second, which is low rate, low delay network. First we note some differences 

between the analytical results and the simulation results, these differences because we use a fixed 

RTT (RTT=0.11674 sec which is the initial RTT) in the analysis, meanwhile the RTT actually 

changes according to CWND due to queuing delay. We also note that the difference increases as time 

increases, this is logical because in the first few RTTs CWND is very small so the RTT is around the 

initial RTT, however the results are very close in the first few RTTs. Anyway this difference is not 

important for us because we are concerned on the first few RTTs. 

It is clear that the modified swift start is faster and better than slow start TCP in estimating the path 

congestion window which is = 21929 bytes after only one RTT , then  the packet pair is disabled and 

the slow start runs normally. The estimated congestion window is proportional to the link bandwidth 

and round trip time it can be calculated as follow: Assuming that packet pair delay deference is D. 

CWND = the amount of data that can be sent in RTT  

= RTT * MSS / D 

Theoretically the packet pair delay deference is the frame length on the bottleneck link, so   

D = frame length /link rate + DQ 

    = (1460+20+7) * 8 / 1544000 = 0.007705 sec 

And RTT is measured for the first pair (RTT = 0.11674 sec)   

So CWND=0.11674*1460/0.007705=22120.75 bytes  

  

Figure 2 Congestion window for BW = 1.5 Mbps and path RTT= 0.11674 Sec  

Obviously, the result in the simulation shows that the delay difference is 0.007772 sec and the CWND 

is 21929 bytes, these results are very close to the mathematical results. This difference between the 

results because in the calculation we've neglected the processing delay which may affect the value of 

D and so decrease CWND. The simulation also shows that after estimating the congestion window in 

the first RTT, the swift start stopped and the slow start runs normally,  Figures 3-a and 3-b show the 

sent segment sequence number for this connection. It is shown that the three algorithms start the 

connection by sending 4 segments, after 1 RTT (0. 11674 sec) each of the slow start and traditional 

(original) swift start send 6 segments with in the second RTT, while the modified swift start send a 
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large number of segments because of its large congestion window which is 21929 bytes which is 

about 14 segments, these segments were paced along the second RTT, until the sender receives an 

other ACK that indicates that the end of the second RTT and the beginning of the third RTT, at this 

time the pacing was stopped and the slow start was used to complete the connection.   

In Figure 3-a shows that after a certain time both algorithms reaches a constant transmission rate, we 

roughly calculate this rate, Transmission rate = 187848 bytes / sec 

  

Figure 3-a the sent segment sequence number for BW = 1.5 Mbps and path RTT= 0.11674 Sec 

  

Figure 3-b the sent segment sequence number for BW = 1.5 Mbps and path RTT= 0.11674 Sec 

             5.A.b) Low Bandwidth, Long Delay networks 

We’ve also tested the traditional and modified swift start models on this connection with the same 

bandwidth but with longer delays to check the performance for long delay paths. For link delay 0.1 

sec the RTT was 0.31343 sec, and the estimated CWND was 58878 bytes a. Figure 4 shows the 

congestion window for this connection, it's clear that the modified swift start is faster than slow start.  

             5.A.c) High Bandwidth Networks 

To compare between the three algorithms on high bandwidth networks we’ve used the same model 

in Figure 1 with PPP link of rate OC1 (518400000 bps) and with different RTT. First we check for 

short RTT to test low delay–high bandwidth networks. We’ve checked for RTT= 0. 07307 sec. 
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Figure 4 shows the congestion window for this connection; we’ve noted that the large congestion 

window which equals 460867 bytes which was estimated by the modified swift start TCP. This 

congestion window can be calculated as follow  

CWND = RTT * MSS / D 

D = (1460+20+ 7) * 8 / 51840000 = 0.0002295 sec 

CWND = 0.07307 * 1460 / 0.0002295 = 464846 bytes 

  

Figure 4 Congestion window for BW = OC1 Mbps and path RTT= 0.07327 Sec  

Figure 5 shows the sent sequence number for this connection, also, shows the effect of large 

congestion window on the traffic sent in the second RTT slow start transmits six segments only 

while modified swift start send a bout 44 segments, that’s equal to the maximum RWIND. 

  

Figure 5 the sent segment sequence number for BW = OC1 Mbps and path RTT = 0.07327 Sec.            

VI. CONCLUSION 

The paper presents methods of simulation and analysis for the slow start, traditional and modified 

swift start algorithms. The results are compared and confirm that the modified algorithm promised 
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enough.  We’ve to mention here that the modified swift start algorithm maintains the core of current 

TCP.  
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