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ABSTRACT

Wireless sensor nodes can experience faults during deployment either due to its hardware malfunctioning or
software failure or even harsh environmental factors and battery failure. This results into presence of anomalies
in their time-series collected data. So, these anomalies demand for reliable detection strategies to support in
long term and/or in large scale WSN deployments. These data of physical variables are transmitted
continuously to a repository for further processing of information as data stream. This paper presents a novel
and distributed machine learning approach towards different anomalies detection based on incorporating the
combined properties of wavelet and support vector machine (SVM). The time-series filtered data are passed
through mother wavelets and several statistical features are extracted. Then features are classified using SVM
to detect anomalies as short fault (SF) and noise fault (NF). The results obtained indicate that the proposed
approach has excellent performance in fault detection and its classification of WS data.
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I. INTRODUCTION

Wireless sensor networks have already emerged as potential source in monitoring and thereby
collection of information in remote geographical, industrial, civil infrastructures and even power
plants. In fact, a large number of sensor nodes equipped with limited computing and communication
abilities are deployed to monitor the variation of physical variables. Due to their uncontrolled use or
harsh environment, they are sensible to various faults which may lead to abnormal data patterns in
monitoring domain. Literatures [1], [2] and [3] have reported the existence of faulty data monitored
by sensors in their deployment in field environment. This is said to be caused either due to defect in
hardware design, improper calibration of sensors or low battery levels of sensor nodes. Also any
change or uncertainty in the environment being monitored may lead to affect the distribution of data
measurements. Anomaly detection in communication network traffic and use of wavelets to identify is
proposed in [4] and role of wavelet analysis is studied in [5].

Due to continuous collection of data by wireless sensor network, it becomes cumbersome to aggregate
them and difficult in detection of anomalies present. The data collection from wireless sensors can be
managed at centralized or distributed level in the network. The centralized approach in study of data
pattern/processing posses constraint to prolong life time of network, since limited battery power of
nodes gets depleted even in transmission of anomalous signals. On other hand, in case of distributed
approach, each node is meant to process the data collected and send the descriptive information to
either other neighbouring nodes or base station.

Truly speaking, the research needs to be oriented towards automatic detection and classification of
sensor data faults at collection point itself. The investigation on faulty sensor data gains its importance
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due to the fact that this would help in detection and thereby its elimination at sensor node level itself.
This could enhance the battery operating life in sensor node since erroneous data need not be
transmitted to the base station thus contributing towards energy efficiency of entire sensor networks.
Thus, efficient anomalies detection measures need to be adopted at the node so as to raise the alert in
the operating system. They need to have their performance insensitive to any parameter setting in the
algorithm or any pattern change in time-series data. Additionally, it is also desired that the technique
should involve low computational burden. It is crucial that a centralized network management tool
embeds the required expert decision to detect all possible anomaly types, as the network is perceived
holistically as an intelligent data delivery system. The design of such efficient and reliable tool
demands a comprehensive understanding of all types of wireless sensor data anomalies, their likely
causes, and their potential solutions.

This paper considers a study on anomalies detection and classification in wireless sensor data with use
of discrete wavelet transform (DWT) and support vector machine (SVM) properties. The proposed
approach does not utilize a huge amount of data in processing the information sought and efficiently
detects and classifies the different types of fault with little processing time. It is aimed to detect and
classify anomalies at node level according to the characteristics of data collected by each individual
Sensor.

The rest of the paper is organized as follows. In section 2, related work in the fault detection strategy
is addressed, followed by methodology of proposed scheme with used techniques in section 3. The
performance evaluation and discussion is presented in section 4. Lastly, the conclusion is drawn in
section 5.

II. RELATED WORK

In the past, fault detection in WSN has been investigated [6-11]. The authors have presented an
approach based on cross-validation of statistical irregularities for on-line detection of faults in sensor
measurements [6]. Ruiz et al. [7] have discussed use of external manager for fault detection in event-
driven WSN. The fault diagnosis study based on PMC model is presented in [8]. The use of statistical
signal processing technique, namely principal component analysis (PCA) in model development to
predict the physical measurand phenomenon is presented in [9]. Any deviation in regular physical
pattern with respect to model prediction suggests the occurrence of an event. Similarly, rule-based
method, estimation method and learning-based method have been discussed for fault
detection/classification of real-world sensor data [10-11]. The performance of these three techniques
is qualitatively explored to classify the different types of fault in sensor data as short fault (SF), noise
fault (NF) and constant fault (CF). The rule-based approach requires predefining the level of threshold
based on histogram method to categorize the noise fault, short fault and constant fault as a separate
class. The linear least square estimation approach is based on statistical correlation between sensor
measurements and a suitable threshold. The value of threshold remain to be determined heuristically
either by maximum error or confidence limit. A learning based approach; Hidden Markov model is
also discussed to detect and classify the different fault types. The authors in [12] have used change in
mean, variance, covariance for detecting distribution changes in sensor data. This detection scheme is
based on the fact, probability distribution of sensor data is known a priori, which is unrealistic in field
deployments. A distributed fault detection algorithm for detection and isolation of faulty sensors in
communication network is presented in [13]. The proposed approach is based on local comparisons of
sensed data between neighbours with a suitable threshold decision criteria test.

The problem associated in processing of huge size data is overcome with use of feature extraction by
DWT and has been presented for anomaly detection in [14]. The use of DWT for anomaly detection
requires predefining a threshold to make a judgment between normal and faulty data series.

Recently, combination of self-organizing map (SOM) with wavelet technique is suggested for
anomaly detection on synthetic and as well as real world data sets [15]. The comparative study of said
approach outperforms over SOM or wavelet as alone. The histogram method is used to select an
appropriate value of threshold. Chenglin et al. [16] have demonstrated the use of particle swarm
optimization and support vector machine in fault diagnosis of sensor.

Faulty sensors typically report extreme or unrealistic values that are easily distinguishable. Despite
the above research effort, still there does not exist well-accepted technique on anomaly detection and
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its classification in wireless sensor data. An edge cutting challenge is to develop the capability to
carry out fault diagnosis in terms of its identification and classification without requiring any prior
knowledge about the data distribution. There is no consensus on the existence of a simple, accurate
and efficient approach in this line of research study. Model based event/anomaly detection scheme
requires the availability of normal data-series in hand. The DWT technique for anomaly detection gets
influenced by the value of threshold used, which in turn depends on number of samples N in data
series. Thus correct selection of N requires knowledge to be known in advance on variation of non-
faulty sensor data. A threshold set too high will result to increased missed detections, while a low
value into many false positives rate. Also, a fixed threshold may not perform well under dynamic
scenario of environment pattern. The use of SOM in communication applications or WSNs is widely
discussed however, suffers due to its limitation in requirement for processing time, which increases
with size of input data. The accuracy of SOM algorithm is influenced by size of neurons, thus a
compromise must be reached between the processing time and detection/classification accuracy.

The research analysis oriented to above related problem is due to motivation drawn in application of
DWT [17] and [18] for fault detection and SVMs [19] and [21] for binary and multi-class automatic
classification of power system/power quality disturbances.

III. METHODOLOGY

The reduction in data size can be obtained by extraction of important statistical features with use of
wavelet approach from real time-series data sets. These features vector when passed through SVM
results into classification of different types of faults. The combined approach of above two has been
successfully applied in study of fault detection and classification in electrical power system. The flow
chart to explain the steps adopted in series-data anomaly detection and subsequent classification to
different class is illustrated in Fig.1. The anomaly detection scheme embedded in the architecture of
sensor node is suggested in Fig. 2. Initially, each sensor node senses its action and information is
processed. It is necessary to make a distinguish between normal and anomaly data-series. A mother
wavelet extraction and feature classification through SVM is embedded in node architecture to ensure
that normal data is transmitted to cluster head.

Collection of sensor data set.

v

Data normalization and filtration using median /
hybrid filters.

¥

Injection of noise fault
and short Fault.

1]

Pass through Db4 and harr mother wavelet.
Determination of approximate and detail coefficients.

2

Arrangement of data in sets of 100 samples each.
Calculation of statistical features.

v

Formation of input data vector of features calculated
from original signal (OS), short fault (SF) and noise
fault (NF)

L]

Classification through LS-SVM for different types of faults

Figure 1. Flow chart of proposed scheme for series-data anomaly detection and classification
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3.1 Discrete wavelet transform

The discrete wavelet transform decomposes transients into a series of wavelet components, each of
which corresponds to a time-domain signal that covers a specific frequency band containing more
detailed information. Wavelets localize the information in the time-frequency plane which is suitable
for the analysis of non-stationary signals. DWT divides up data, functions into different frequency
components, and then studies each component with a resolution matched to its scale. The separate
decomposition of data signal into fine-scale information is referred as detail (D) coefficients, while
rough-scale information known as approximate (A) coefficients. The approximation is the high scale,
low-frequency component of the signal. The detail is the low-scale, high-frequency components. The
decomposition process can be iterated, with successive approximations being decomposed in turn, so
that one signal is divided into many lower resolution components which is called the wavelet
decomposition tree and is shown in Fig. 3. As decompositions are done on higher levels, lower
frequency components are filtered out progressively.
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R| | |proessing:| | | vawet || Vectors: o
consecutive | | oS |
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Figure 2. Internal Architecture of anomaly detection scheme
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Figure 3. Wavelet decomposition tree

The wavelet transform not only decomposes a signal into frequency bands, but also, unlike the Fourier
transform, provides a non uniform division of the frequency domain (i.e., the wavelet transform uses
short windows at high frequencies and long windows for low frequency components). Wavelet
analysis deals with expansion of functions in terms of a set of basic functions (wavelets) which are
generated from a mother wavelet by operations of dilatations and translations.

DWT of sampled data signal can be obtained by implementing the discrete wavelet transform as:

kx”
DWT(f,x,y)=—=Y_f(k)¥' "~
F [ ]

&)
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Where the parameters x and Y in equation (1) are replaced by x; and kxy', k and mbeing integer

variables. In a standard DWT, the coefficients are sampled from the CWT on a dyadic grid. Using the
scaling function, the signal can be expressed as:

Y1) = Z ¢ (K272 927 1~ k) + z Zdj (02wt -k)
k=—o0 k=—o0 j=jo )
Where jo represents the coarsest scale spanned by the scaling function. The scaling and wavelet
coefficients of the signal y() can be evaluated by using a filter bank of quadrature mirror filters given

as:
atC (k)= Z ¢4 (m)h(m —2k) 3)
A7 (k)= Y cju(m)hy(m=2k) (4)

Equation (3) and (4) show that the coefficients at coarser level can be attained by passing the
coefficients at the finer level to their respective filter followed by a decimation of two.
Implementation of DWT involves successive pairs of high pass and low pass filters at each scaling
stage of wavelet transform. This can be thought as successive approximations of the same function,
each approximation providing the incremental information related to a particular scale (frequency
range), and the first scale covering a broad frequency range at the high frequency end of the frequency
spectrum, however, with progressively shorter bandwidths. Conversely, the first scale will have the
highest time resolution; higher scales will cover increasingly longer time intervals. Daubechies4 (db4)
and haar wavelets are used in this work for fault detection in sensor data time-series.

3.2 Support vector machine

A class of machine-learning algorithm that uses kernel function is capable to emulate a mapping of
data measurements from the input space vector to a higher dimensional feature space vector. The
linear or smooth surfaces in the feature space result into non-linear surfaces in the input space and
thereby classify the data as normal or anomalous. Vapnik et al. [22] introduced binary SVM classifier
using theory of kernel-based methods and structural risk minimization. In respect of the limitations of
other machine learning techniques like, ANNs, local minima convergence, over-learning and
difficulty in selection of appropriate network structure does not pose a constraint in use of SVMs.
This approach is a computationally powerful algorithm based on statistical learning theory firstly
proposed by Salat and Osowski [19]. The input vector space in SVMs is usually mapped into a high
dimensional feature space and a hyper-plane in the feature space is used to maximize its classification
ability. SVMs can potentially handle large feature spaces as its training is carried out so that the
dimension of classified vectors does not affect the performance of SVM. This suits in the application
for large classification problem associated in sensor data fault types. The advantage of SVMs are due
to better generalization properties as comparison to conventional neural classifiers because training is
based on sequentially minimized optimization (SMO) technique [21-22]. For M-dimensional inputs
F(i=12,. ,M),M is the number of features sampled at regular interval in time-series data,

which belong to class 1 or class 2 with outputs o; =1 for class OS and o,=-1 for class SF/NF,
respectively. The hyper-plane for linearly separable feature F is represented as:

f(F):wTF+b:ijFj+b:0 (5)
j=1
where w is an m-dimensional vector and b is a constant. The position of the separating hyperplane is
decided by the values of w and scalar b. The constraints followed by the hyperplane are
f(F)21if o, =1and f(F,)2=-1if o, =—1and thus

0, f(F)=0,W F+b) 2+ fori=12,.. M (6)
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The hyperplane that creates the maximum distance between the plane and the nearest data is called the
optimal separating hyperplane as shown in Fig. 4. The geometrical distance is found as Hwaz [17]. The

optimal hyperplane is obtained based on the quadratic optimization problem:
Minimize
%||w||‘2 +cf;. subjectto o,(W s+b)21-& fori=12,....M )

i=1
& 20 for all i
where £ is the distance between the margin, parameter C is error penalty factor that takes into
account misclassified point in training/testing set and the examples F, lying on the wrong side of the
margin. Based on Kuhn-Tucker conditions, a maximize problem [17] can be formulated and the
solution of these optimal problem leads to determination of support vector (SV) which lie on the
separating hyper planes. The number of SVMs are less than the number of training samples to make
SVMs computationally efficient [19]. The value of the optimal bias » can be found from the

expression: p" = _%z 0.0 W F,+vIF) (8)
SVs
where v, and v, are the arbitrary SVMs for class 1 and class 2, respectively.
Then the final decision function is given by
FFY=Y o FF+b’ )
SVs
Any unknown feature sample F is thus classified as,
- >
< {Class 1, f(F)_-O } (10)
Class — 2, otherwise

The nonlinear classification of sensor data faults can accomplished using SVMs applying a kernel
function by mapping the classified data to a high-dimensional feature space where the linear
classification is possible [19]. There are different kernel functions used according to the type of
classification scenario.

Figure 4. Optimal hyper-plane formed in SVM classification
In this paper, Gaussian radial basis kernel function which gives the best results is selected and the
classification accuracy results are compared with other kernel functions, i.e. polynomial kernel. The
radial basis kernel function is defined as:

2
K(F.2) =exp[—u] (an

20

where o is the width of the Gaussian function known as Gaussian kernel parameter. The detailed
explanation about the SVMs is given in [19]-[21].

3.3 Real-time series data signal processing

The combination of above two techniques is implemented to support the proposed strategy of
anomaly detection in a collection of real-time series data obtained from Smart-Its [23]. A Smart-It
unit embodies a sensor module consisting of light sensor, microphone thermometer, X-axis and Y-
axis accelerometers and pressure sensor along with a communication module. The series time
variation of sound, light and pressure signals are shown in Fig. 5. These data sets were obtained over
several states of environment. The constant value of pressure sensor over the entire data series is
depicted which suggests a “constant” fault type. The real-time wireless sensor data of sound, light and
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pressure signals is processed after being passed through median filter and median-hybrid filter.
Median filter is the nonlinear filter used to preserve abrupt shifts (edges) and remove the impulsive
noise from the data-series. The main issue that exists with median filter is due to its high
computational cost. While on the other hand, linear median-hybrid filters have been suggested to
combine the good properties of linear and median filters by linear and nonlinear operations. They are
computationally much less expensive than standard median filters. The series-data in study for
anomaly detection is normalized to eliminate the potential outliers as:
Raw data — Mean (Raw data)

Variance (Raw data)

Normalized data = (12)
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Figure 5. Real-time series variation of raw signals
3.4 Sensor data faults:

The three common types of sensor data faults as according to the definition in [8] are short fault, noise
fault and constant fault. The short fault refers to sharp change in monitored quantity at an instant with
respect to its previous sample. The noise fault is characterized by an increased variance over a
definite period, i.e. successive samples unlike short fault at single sample only. On the other hand,
constant fault describes a constant value, may be either higher or lower compared to normal
measurements for successive samples. Such fault type results to zero value of standard deviation for
monitored samples. In the study reported here, only two types of faults; short fault and noise fault are
considered. These faults have been experimentally observed in several environmental monitoring
platforms.

A sample of short fault (SF) data is obtained by injecting short fault intensity f ={3.5} to a data value

as: dY =d,xf (13)
at a randomly picked data sample d;.

Fig. 6 shows the instants at which short fault were injected into the signal obtained through filters for
their detection classification. The total percentage of short fault injected into series data is about
1.0%.Similarly, a series of noise fault (NF) is introduced into normalized raw data through random
selection of successive samples d, and superimpose of a random signal with 20dB noise content

having signal property of zero mean and unity variance. The variation of sound series data with noise
introduced at randomly chosen 200 successive samples over three different intervals is shown in Fig.
7. Thus, total number of noise fault samples in the series data is 35.5%.

3.5 Combination of DWT and SVM:

The approximate and detail coefficients are obtained through db4 and haar wavelet from the
normalized data after being passed into median and hybrid filter. These coefficients belong to original
signal (OS) without any fault, short fault and noise fault injected in time series data. To reduce the
size of input data fed to SVM, four features; namely mean, standard deviation, moment and variance
are extracted from each 100 samples in time series data. Thus time-series data is transformed into sets

of features { fuans fstps fos foar} and now to be represented as:
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fmean fSTD fm fvar for 1-100 Samples
Fos Fsp o Fyp = oo : (14)
Fmean Jsto [ Sear  Jor 1501—1600 samples

Thus, feature vector of time-series data consists of 16 rows with 4 columns.
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Figure 6. Short fault injected into the raw signal (normalized)
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Figure 7.Noise fault introduced into the raw signal (normalized)

The data collection by sensor may have any pattern of anomaly present in the entire length of time-
series. A subset of data measurements over some continuous time frame may differ in their pattern
from the general trend to warrant being considered as anomalous data series. Hence to take into
account such phenomenon occurrence, the input data vector fed to SVM is represented in two
different forms; sequential-series (SE) and staggered-series (ST). A sequential-series of features refers
to time-series wherein, entire length of data consists of samples corresponding to original signal
followed by anomaly signal. On other hand, staggered-series relates to time-series that consists of
alternate sampled series of original signal and anomaly signal. An enhanced performance in
classification may be achieved with use of more number of data sets in training of SVM. So, use of
duplicate data sets corresponding to each pattern is considered in study. Thus, input vector fed to
SVM for classification is given as:

Fos Fpg
F F,
(Input VECtor)SE = FSFO;F 5 (Inpbll VCCZOV)ST = ‘;FO'SNF (15)
FSF,NF FSF’NF

and forms 32 rows with 4 columns.

With the above input vector, the objective remains to partition set of features belonging to each
category of type of signal,i.e. F,; NF,, =® and F,; "F,, =®. The output of SVM algorithm for sets
of features that belong to OS class is defined as 1, while for fault types, as -1 to differentiate between
the two categories. The input vector (15) obtained using time-series data passed through median filter
is considered for training, while those from hybrid filter as testing of SVM classifier.
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IV.  PERFORMANCE EVALUATION AND DISCUSSION

This section presents the performance evaluation of proposed scheme; integration of DWT and SVM
in detection and classification of anomaly in time-series data collected by wireless sensor. The results
presented here are produced using real-time series data sets obtained from sensor modules deployed in
real environment. The performance indices (16-18) are used to assess the performance of proposed

scheme of anomaly detection in real time-series data sets [21]. Consider {P,N} be the positive and
negative instance classes as assigned and {P.,N.}be the classifications obtained by the SVM
classifier. Also consider, P(P|I ) be the posterior probability for an instance [ that is positive. Then,

True positive rate (TPR) of the classifier is:
positives correctly classifed

TPR =P(P.|P)= = _ (16)
' total positives assigned

False positive rate (FPR) of the classifier is:

FPR=P ( P | N) _ negatives inco.rrectly c.‘lassifed a7
total negatives assigned

Detection accuracy (DA) of the classifier is:

Detection accuracy = ixlOO % (18)

TPR+ FPR

Area under the receiver operating characteristic (ROC) curve (AUC): The area under the ROC curve,
or simply AUC, provides a good “summary” for the performance of the ROC curves [22].

4.1 SVM as binary classifier:

The performance indices of classifier scheme are evaluated using features extracted from detail (D),
approximate (A) and both approximate and detail (AD) coefficients of wavelet. The analysis of these
indices determined for time-series data belonging to original signal and short fault is shown in Fig. 8.
The AUC value of classifier is observed to be in the range from 0.90-1.0. A unity value of AUC is
indicated for pressure data series. In fact, the original pressure signal exhibits a constant value and a
short fault injected within 100 samples, are distinctly represented in form of statistical feature. Thus,
such change in data pattern is distinctly classified as a separate class. Fig. 9 shows the classification
performance of original signal against noise fault. As observed, AUC gets increased with use of
features extracted from both approximate and detail (AD) coefficients of wavelet. The classification
pattern generated from SVM classifier for light signal and sound signal is depicted in Fig. 10 and 11
respectively. As observed, the features are distinctly represented through the classifier boundary.
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Figure 11. Classification pattern of SVM classifier for sound signal as staggered series

Further, the result is presented for time series data having different magnitude of noise introduced at
randomly chosen 200 and 300 successive samples with features fed as sequential series to SVM
classifier. The classification performance between original and noise of sound signal by use of
approximate and approximate-detail coefficients is presented in Fig. 12. As observed, the
classification property has not deteriorated.

Next, classifier performance is tested for time series data having different magnitude of short fault
introduced. The results are presented in Fig. 13 for classification between original and short fault light
signal with features fed as sequential and staggered series.

The SVM classifier by use of coefficients extracted through haar mother wavelet is also carried out
and presented in following paragraph. The results are obtained for short fault, f ={3.5} and 20 dB
noise introduced in time series data. The comparative performance with AD coefficients extracted

through dB4 mother wavelet is shown in Fig. 14.
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4.2 SVM as multi-class classifier:

The classification of original signal against short fault and noise fault as a multi-class problem is
discussed in this sub-section. Since performance in terms of detection accuracy can be considered for
multi-class, thus other indices are not evaluated. Fig. 15 presents the detection accuracy with use of
features extracted from different coefficients of wavelet

100 - D A AD 100 -
80 -

60 -

40 A
20 1

0 4
Sound Light Pressure Sound Light Pressure

Accuracy (%)
Accuracy (%)

(a) Sequential series (b) Staggered series
Figure 15. Performance indices of SVM classifier as multi-class for OS vs SF vs NF

V. CONCLUSION

The integration of DWT and SVM for anomaly detection and classification problem was presented in
this paper using real-time series data of wireless sensor deployed in field environment. The signal
processing property of DWT was utilized in fine-scale and approximate-scale extraction of
information from data. The use of statistical features instead of series data in form of wavelet
coefficients resulted in reduce size of input vector fed to SVM. The value of AUC as binary class was
determined in the range of 0.9-1.0 for OS against SF, while for OS against NF, it lies between 0.75-
0.86. The robustness of SVM classifier was demonstrated for fault magnitude change and different
noise level introduced in time series data. The detection accuracy as multi-class was also found to be
high. The suggested approach in anomaly detection and classification is independent from heuristic
adjustment of any parameter and does not require any domain knowledge of non-faulty data series in
obtaining high accuracy.
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