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ABSTRACT 

Wireless sensor nodes can experience faults during deployment either due to its hardware malfunctioning or 

software failure or even harsh environmental factors and battery failure. This results into presence of anomalies 

in their time-series collected data. So, these anomalies demand for reliable detection strategies to support in 

long term and/or in large scale WSN deployments. These data of physical variables are transmitted 

continuously to a repository for further processing of information as data stream. This paper presents a novel 

and distributed machine learning approach towards different anomalies detection based on incorporating the 

combined properties of wavelet and support vector machine (SVM). The time-series filtered data are passed 

through mother wavelets and several statistical features are extracted. Then features are classified using SVM 

to detect anomalies as short fault (SF) and noise fault (NF). The results obtained indicate that the proposed 

approach has excellent performance in fault detection and its classification of WS data. 
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I. INTRODUCTION 

Wireless sensor networks have already emerged as potential source in monitoring and thereby 

collection of information in remote geographical, industrial, civil infrastructures and even power 

plants. In fact, a large number of sensor nodes equipped with limited computing and communication 

abilities are deployed to monitor the variation of physical variables. Due to their uncontrolled use or 

harsh environment, they are sensible to various faults which may lead to abnormal data patterns in 

monitoring domain. Literatures [1], [2] and [3] have reported the existence of faulty data monitored 

by sensors in their deployment in field environment. This is said to be caused either due to defect in 

hardware design, improper calibration of sensors or low battery levels of sensor nodes. Also any 

change or uncertainty in the environment being monitored may lead to affect the distribution of data 

measurements. Anomaly detection in communication network traffic and use of wavelets to identify is 

proposed in [4] and role of wavelet analysis is studied in [5]. 

Due to continuous collection of data by wireless sensor network, it becomes cumbersome to aggregate 

them and difficult in detection of anomalies present. The data collection from wireless sensors can be 

managed at centralized or distributed level in the network. The centralized approach in study of data 

pattern/processing posses constraint to prolong life time of network, since limited battery power of 

nodes gets depleted even in transmission of anomalous signals. On other hand, in case of distributed 

approach, each node is meant to process the data collected and send the descriptive information to 

either other neighbouring nodes or base station. 

Truly speaking, the research needs to be oriented towards automatic detection and classification of 

sensor data faults at collection point itself. The investigation on faulty sensor data gains its importance 
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due to the fact that this would help in detection and thereby its elimination at sensor node level itself. 

This could enhance the battery operating life in sensor node since erroneous data need not be 

transmitted to the base station thus contributing towards energy efficiency of entire sensor networks. 

Thus, efficient anomalies detection measures need to be adopted at the node so as to raise the alert in 

the operating system. They need to have their performance insensitive to any parameter setting in the 

algorithm or any pattern change in time-series data. Additionally, it is also desired that the technique 

should involve low computational burden. It is crucial that a centralized network management tool 

embeds the required expert decision to detect all possible anomaly types, as the network is perceived 

holistically as an intelligent data delivery system. The design of such efficient and reliable tool 

demands a comprehensive understanding of all types of wireless sensor data anomalies, their likely 

causes, and their potential solutions.  

This paper considers a study on anomalies detection and classification in wireless sensor data with use 

of discrete wavelet transform (DWT) and support vector machine (SVM) properties. The proposed 

approach does not utilize a huge amount of data in processing the information sought and efficiently 

detects and classifies the different types of fault with little processing time. It is aimed to detect and 

classify anomalies at node level according to the characteristics of data collected by each individual 

sensor. 

The rest of the paper is organized as follows. In section 2, related work in the fault detection strategy 

is addressed, followed by methodology of proposed scheme with used techniques in section 3. The 

performance evaluation and discussion is presented in section 4. Lastly, the conclusion is drawn in 

section 5. 

II. RELATED WORK 

In the past, fault detection in WSN has been investigated [6-11]. The authors have presented an 

approach based on cross-validation of statistical irregularities for on-line detection of faults in sensor 

measurements [6]. Ruiz et al. [7] have discussed use of external manager for fault detection in event-

driven WSN. The fault diagnosis study based on PMC model is presented in [8]. The use of statistical 

signal processing technique, namely principal component analysis (PCA) in model development to 

predict the physical measurand phenomenon is presented in [9]. Any deviation in regular physical 

pattern with respect to model prediction suggests the occurrence of an event. Similarly, rule-based 

method, estimation method and learning-based method have been discussed for fault 

detection/classification of real-world sensor data [10-11]. The performance of these three techniques 

is qualitatively explored to classify the different types of fault in sensor data as short fault (SF), noise 

fault (NF) and constant fault (CF). The rule-based approach requires predefining the level of threshold 

based on histogram method to categorize the noise fault, short fault and constant fault as a separate 

class. The linear least square estimation approach is based on statistical correlation between sensor 

measurements and a suitable threshold. The value of threshold remain to be determined heuristically 

either by maximum error or confidence limit. A learning based approach; Hidden Markov model is 

also discussed to detect and classify the different fault types. The authors in [12] have used change in 

mean, variance, covariance for detecting distribution changes in sensor data. This detection scheme is 

based on the fact, probability distribution of sensor data is known a priori, which is unrealistic in field 

deployments. A distributed fault detection algorithm for detection and isolation of faulty sensors in 

communication network is presented in [13]. The proposed approach is based on local comparisons of 

sensed data between neighbours with a suitable threshold decision criteria test. 

The problem associated in processing of huge size data is overcome with use of feature extraction by 

DWT and has been presented for anomaly detection in [14]. The use of DWT for anomaly detection 

requires predefining a threshold to make a judgment between normal and faulty data series.  

Recently, combination of self-organizing map (SOM) with wavelet technique is suggested for 

anomaly detection on synthetic and as well as real world data sets [15]. The comparative study of said 

approach outperforms over SOM or wavelet as alone. The histogram method is used to select an 

appropriate value of threshold. Chenglin et al. [16] have demonstrated the use of particle swarm 

optimization and support vector machine in fault diagnosis of sensor. 

Faulty sensors typically report extreme or unrealistic values that are easily distinguishable. Despite 

the above research effort, still there does not exist well-accepted technique on anomaly detection and 
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its classification in wireless sensor data. An edge cutting challenge is to develop the capability to 

carry out fault diagnosis in terms of its identification and classification without requiring any prior 

knowledge about the data distribution. There is no consensus on the existence of a simple, accurate 

and efficient approach in this line of research study. Model based event/anomaly detection scheme 

requires the availability of normal data-series in hand. The DWT technique for anomaly detection gets 

influenced by the value of threshold used, which in turn depends on number of samples N  in data 

series. Thus correct selection of N  requires knowledge to be known in advance on variation of non-

faulty sensor data. A threshold set too high will result to increased missed detections, while a low 

value into many false positives rate. Also, a fixed threshold may not perform well under dynamic 

scenario of environment pattern. The use of SOM in communication applications or WSNs is widely 

discussed however, suffers due to its limitation in requirement for processing time, which increases 

with size of input data. The accuracy of SOM algorithm is influenced by size of neurons, thus a 

compromise must be reached between the processing time and detection/classification accuracy.  

The research analysis oriented to above related problem is due to motivation drawn in application of 

DWT [17] and [18] for fault detection and SVMs [19] and [21] for binary and multi-class automatic 

classification of power system/power quality disturbances. 

III. METHODOLOGY 

The reduction in data size can be obtained by extraction of important statistical features with use of 

wavelet approach from real time-series data sets. These features vector when passed through SVM 

results into classification of different types of faults. The combined approach of above two has been 

successfully applied in study of fault detection and classification in electrical power system. The flow 

chart to explain the steps adopted in series-data anomaly detection and subsequent classification to 

different class is illustrated in Fig.1. The anomaly detection scheme embedded in the architecture of 

sensor node is suggested in Fig. 2. Initially, each sensor node senses its action and information is 

processed. It is necessary to make a distinguish between normal and anomaly data-series. A mother 

wavelet extraction and feature classification through SVM is embedded in node architecture to ensure 

that normal data is transmitted to cluster head.  

 
 

Figure 1. Flow chart of proposed scheme for series-data anomaly detection and classification 
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3.1 Discrete wavelet transform 

The discrete wavelet transform decomposes transients into a series of wavelet components, each of 

which corresponds to a time-domain signal that covers a specific frequency band containing more 

detailed information. Wavelets localize the information in the time-frequency plane which is suitable 

for the analysis of non-stationary signals. DWT divides up data, functions into different frequency 

components, and then studies each component with a resolution matched to its scale. The separate 

decomposition of data signal into fine-scale information is referred as detail (D) coefficients, while 

rough-scale information known as approximate (A) coefficients. The approximation is the high scale, 

low-frequency component of the signal. The detail is the low-scale, high-frequency components. The 

decomposition process can be iterated, with successive approximations being decomposed in turn, so 

that one signal is divided into many lower resolution components which is called the wavelet 

decomposition tree and is shown in Fig. 3. As decompositions are done on higher levels, lower 

frequency components are filtered out progressively. 

 

 

 

Figure 2.  Internal Architecture of anomaly detection scheme   
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Figure 3. Wavelet decomposition tree 

The wavelet transform not only decomposes a signal into frequency bands, but also, unlike the Fourier 

transform, provides a non uniform division of the frequency domain (i.e., the wavelet transform uses 

short windows at high frequencies and long windows for low frequency components). Wavelet 

analysis deals with expansion of functions in terms of a set of basic functions (wavelets) which are 

generated from a mother wavelet by operations of dilatations and translations. 

DWT of sampled data signal can be obtained by implementing the discrete wavelet transform as: 
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Where the parameters x  and y  in equation (1) are replaced by 0
mx and 0

mkx , k  and mbeing integer 

variables. In a standard DWT, the coefficients are sampled from the CWT on a dyadic grid. Using the 

scaling function, the signal can be expressed as: 

/2 /2( ) ( )2 (2 ) ( )2 (2 )jo jo j j
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Where jo represents the coarsest scale spanned by the scaling function. The scaling and wavelet 

coefficients of the signal ( )y t  can be evaluated by using a filter bank of quadrature mirror filters given 

as: 
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Equation (3) and (4) show that the coefficients at coarser level can be attained by passing the 

coefficients at the finer level to their respective filter followed by a decimation of two. 

Implementation of DWT involves successive pairs of high pass and low pass filters at each scaling 

stage of wavelet transform. This can be thought as successive approximations of the same function, 

each approximation providing the incremental information related to a particular scale (frequency 

range), and the first scale covering a broad frequency range at the high frequency end of the frequency 

spectrum, however, with progressively shorter bandwidths. Conversely, the first scale will have the 

highest time resolution; higher scales will cover increasingly longer time intervals. Daubechies4 (db4) 

and haar  wavelets are used in this work for fault detection in sensor data time-series.  
 

3.2 Support vector machine 
 

A class of machine-learning algorithm that uses kernel function is capable to emulate a mapping of 

data measurements from the input space vector to a higher dimensional feature space vector. The 

linear or smooth surfaces in the feature space result into non-linear surfaces in the input space and 

thereby classify the data as normal or anomalous. Vapnik et al. [22] introduced binary SVM classifier 

using theory of kernel-based methods and structural risk minimization. In respect of the limitations of 

other machine learning techniques like, ANNs, local minima convergence, over-learning and 

difficulty in selection of appropriate network structure does not pose a constraint in use of SVMs. 

This approach is a computationally powerful algorithm based on statistical learning theory firstly 

proposed by Salat and Osowski [19]. The input vector space in SVMs is usually mapped into a high 

dimensional feature space and a hyper-plane in the feature space is used to maximize its classification 

ability. SVMs can potentially handle large feature spaces as its training is carried out so that the 

dimension of classified vectors does not affect the performance of SVM. This suits in the application 

for large classification problem associated in sensor data fault types. The advantage of SVMs are due 

to better  generalization properties as comparison to conventional neural classifiers because training is 

based on sequentially minimized optimization (SMO) technique [21-22]. For M-dimensional inputs 

( 1, 2,............, ),iF i M M=  is the number of features sampled at regular interval in time-series data, 

which belong to class 1 or class 2 with outputs 1io =  for class OS and 1io = −  for class SF/NF, 

respectively. The hyper-plane for linearly separable feature F  is represented as: 

1
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m
T
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j
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where w is an m-dimensional vector and b is a constant. The position of the separating hyperplane is 

decided by the values of  w and scalar b. The constraints followed by the hyperplane are 

( ) 1if F ≥ if 1io = and ( ) 1if F ≥ − if 1io = − and thus  

( ) ( ) 1 1,2,............,
T

i i io f F o w F b for i M= + ≥ + =
        (6) 
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The hyperplane that creates the maximum distance between the plane and the nearest data is called the 

optimal separating hyperplane as shown in Fig. 4. The geometrical distance is found as 
2

w
−

[17]. The 

optimal hyperplane is obtained based on the quadratic optimization problem: 

Minimize 
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where iξ  is the distance between the margin, parameter C is error penalty factor that takes into 

account misclassified point in training/testing set  and the examples iF  lying on the wrong side of the 

margin. Based on Kuhn–Tucker conditions, a maximize problem [17] can be formulated and the 

solution of these optimal problem leads to determination of support vector (SV) which lie on the 

separating hyper planes. The number of SVMs are less than the number of training samples to make 

SVMs computationally efficient [19]. The value of the optimal bias *b can be found from the 

expression: * *
1 2

1
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where 1v and 2v  are the arbitrary SVMs for class 1 and class 2, respectively. 

Then the final decision function is given by 
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Any unknown feature sample F  is thus classified as, 
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The nonlinear classification of sensor data faults can accomplished using SVMs applying a kernel 

function by mapping the classified data to a high-dimensional feature space where the linear 

classification is possible [19]. There are different kernel functions used according to the type of 

classification scenario.  

2
m

w
=

 
Figure 4.  Optimal hyper-plane formed in SVM classification  

In this paper, Gaussian radial basis kernel function which gives the best results is selected and the 

classification accuracy results are compared with other kernel functions, i.e. polynomial kernel. The 

radial basis kernel function is defined as: 
2

2
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where σ  is the width of the Gaussian function known as Gaussian kernel parameter. The detailed 

explanation about the SVMs is given in [19]-[21]. 

 

3.3 Real-time series data signal processing 
 

The combination of above two techniques is implemented to support the proposed strategy of 

anomaly detection in a collection of real-time series data obtained from Smart-Its [23]. A Smart-It 

unit embodies a sensor module consisting of light sensor, microphone thermometer, X-axis and Y-

axis accelerometers and pressure sensor along with a communication module. The series time 

variation of sound, light and pressure signals are shown in Fig. 5. These data sets were obtained over 

several states of environment. The constant value of pressure sensor over the entire data series is 

depicted which suggests a “constant” fault type. The real-time wireless sensor data of sound, light and 
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pressure signals is processed after being passed through median filter and median-hybrid filter. 

Median filter is the nonlinear filter used to preserve abrupt shifts (edges) and remove the impulsive 

noise from the data-series. The main issue that exists with median filter is due to its high 

computational cost. While on the other hand, linear median-hybrid filters have been suggested to 

combine the good properties of linear and median filters by linear and nonlinear operations. They are 

computationally much less expensive than standard median filters. The series-data in study for 

anomaly detection is normalized to eliminate the potential outliers as: 

( )

( )

Raw data Mean Raw data
Normalized data

Variance Raw data

−
=     (12) 

 
Figure 5. Real-time series variation of raw signals 

3.4 Sensor data faults: 
 

The three common types of sensor data faults as according to the definition in [8] are short fault, noise 

fault and constant fault. The short fault refers to sharp change in monitored quantity at an instant with 

respect to its previous sample.  The noise fault is characterized by an increased variance over a 

definite period, i.e. successive samples unlike short fault at single sample only. On the other hand, 

constant fault describes a constant value, may be either higher or lower compared to normal 

measurements for successive samples. Such fault type results to zero value of standard deviation for 

monitored samples. In the study reported here, only two types of faults; short fault and noise fault are 

considered. These faults have been experimentally observed in several environmental monitoring 

platforms.  

A sample of short fault (SF) data is obtained by injecting short fault intensity {3.5}f =  to a data value 

as:  
sf
i id d f= ×         (13) 

at a randomly picked data sample id .  

Fig. 6 shows the instants at which short fault were injected into the signal obtained through filters for 

their detection classification. The total percentage of short fault injected into series data is about 

1.0%.Similarly, a series of noise fault (NF) is introduced into normalized raw data through random 

selection of successive samples sd  and superimpose of a random signal with 20dB noise content 

having signal property of zero mean and unity variance. The variation of sound series data with noise 

introduced at randomly chosen 200 successive samples over three different intervals is shown in Fig. 

7. Thus, total number of noise fault samples in the series data is 35.5%. 

3.5 Combination of DWT and SVM: 
 

The approximate and detail coefficients are obtained through db4 and haar wavelet from the 

normalized data after being passed into median and hybrid filter. These coefficients belong to original 

signal (OS) without any fault, short fault and noise fault injected in time series data. To reduce the 

size of input data fed to SVM, four features; namely mean, standard deviation, moment and variance 

are extracted from each 100 samples in time series data. Thus time-series data is transformed into sets 

of features { }var, , ,mean STD mf f f f  and now to be represented as: 
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Thus, feature vector of time-series data consists of 16 rows with 4 columns.  

 

 

 
Figure 6. Short fault injected into the raw signal (normalized) 

 

 

 
Figure 7.Noise fault introduced into the raw signal (normalized) 

 

The data collection by sensor may have any pattern of anomaly present in the entire length of time-

series. A subset of data measurements over some continuous time frame may differ in their pattern 

from the general trend to warrant being considered as anomalous data series. Hence to take into 

account such phenomenon occurrence, the input data vector fed to SVM is represented in two 

different forms; sequential-series (SE) and staggered-series (ST). A sequential-series of features refers 

to time-series wherein, entire length of data consists of samples corresponding to original signal 

followed by anomaly signal. On other hand, staggered-series relates to time-series that consists of 

alternate sampled series of original signal and anomaly signal. An enhanced performance in 

classification may be achieved with use of more number of data sets in training of SVM. So, use of 

duplicate data sets corresponding to each pattern is considered in study. Thus, input vector fed to 

SVM for classification is given as: 
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and forms 32 rows with 4 columns.  

With the above input vector, the objective remains to partition set of features belonging to each 

category of type of signal, i.e. 
OS SF

F F∩ = Φ  and 
OS NF

F F∩ = Φ . The output of SVM algorithm for sets 

of features that belong to OS class is defined as 1, while for fault types, as -1 to differentiate between 

the two categories. The input vector (15) obtained using time-series data passed through median filter 

is considered for training, while those from hybrid filter as testing of SVM classifier.  
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IV. PERFORMANCE EVALUATION AND DISCUSSION 
 

This section presents the performance evaluation of proposed scheme; integration of DWT and SVM 

in detection and classification of anomaly in time-series data collected by wireless sensor. The results 

presented here are produced using real-time series data sets obtained from sensor modules deployed in 

real environment. The performance indices (16-18) are used to assess the performance of proposed 

scheme of anomaly detection in real time-series data sets [21]. Consider { },P N  be the positive and 

negative instance classes as assigned and { },c cP N be the classifications obtained by the SVM 

classifier. Also consider, ( )P P I  be the posterior probability for an instance I  that is positive. Then, 

True positive rate (TPR) of the classifier is: 

( )c

positives correctly classifed
TPR P P P

total positives assigned
= ≈     (16) 

False positive rate (FPR) of the classifier is:  

( )c

negatives incorrectly classifed
FPR P P N

total negatives assigned
= ≈     (17) 

Detection accuracy (DA) of the classifier is: 

 100 %
TPR

Detection accuracy
TPR FPR

= ×
+

     (18) 

Area under the receiver operating characteristic (ROC) curve (AUC): The area under the ROC curve, 

or simply AUC, provides a good “summary” for the performance of the ROC curves [22].  

4.1 SVM as binary classifier: 

The performance indices of classifier scheme are evaluated using features extracted from detail (D), 

approximate (A) and both approximate and detail (AD) coefficients of wavelet. The analysis of these 

indices determined for time-series data belonging to original signal and short fault is shown in Fig. 8. 

The AUC value of classifier is observed to be in the range from 0.90-1.0. A unity value of AUC is 

indicated for pressure data series. In fact, the original pressure signal exhibits a constant value and a 

short fault injected within 100 samples, are distinctly represented in form of statistical feature. Thus, 

such change in data pattern is distinctly classified as a separate class. Fig. 9 shows the classification 

performance of original signal against noise fault. As observed, AUC gets increased with use of 

features extracted from both approximate and detail (AD) coefficients of wavelet. The classification 

pattern generated from SVM classifier for light signal and sound signal is depicted in Fig. 10 and 11 

respectively. As observed, the features are distinctly represented through the classifier boundary.  
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(b) Staggered series 

 

Figure 8. Performance indices of SVM classifier as binary class for OS vs SF 

 

 

 

 
(a) Sequential series 

 

 
(b) Staggered series 

Figure 9.Performance indices of SVM classifier binary class for OS vs NF 
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(a) Detail coefficient     (b) Both approximate and detail coefficient   

 

Fig. 10.Classification pattern of SVM classifier for light signal as sequential series 

 

    
(a) Approximate coefficient    (b) Both approximate and detail coefficient   

Figure 11. Classification pattern of SVM classifier for sound signal as staggered series 

 

Further, the result is presented for time series data having different magnitude of noise introduced at 

randomly chosen 200 and 300 successive samples with features fed as sequential series to SVM 

classifier. The classification performance between original and noise of sound signal by use of 

approximate and approximate-detail coefficients is presented in Fig. 12. As observed, the 

classification property has not deteriorated.  

Next, classifier performance is tested for time series data having different magnitude of short fault 

introduced. The results are presented in Fig. 13 for classification between original and short fault light 

signal with features fed as sequential and staggered series.  

The SVM classifier by use of coefficients extracted through haar mother wavelet is also carried out 

and presented in following paragraph. The results are obtained for short fault, {3.5}f =  and 20 dB 

noise introduced in time series data. The comparative performance with AD coefficients extracted 

through dB4 mother wavelet is shown in Fig. 14.  
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Figure 12.Classification performance for different magnitude of noise introduced at randomly chosen 200 and 

300 successive samples 
 

   
 

   
 

Figure 13. Classification performance for different magnitude of short fault introduced 

  

  
Figure 14. Comparative performance between mother wavelets for OS-SF and OS-NF by use of features as 

sequential and staggered series 
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4.2 SVM as multi-class classifier: 
 

The classification of original signal against short fault and noise fault as a multi-class problem is 

discussed in this sub-section. Since performance in terms of detection accuracy can be considered for 

multi-class, thus other indices are not evaluated. Fig. 15 presents the detection accuracy with use of 

features extracted from different coefficients of wavelet 

     
(a) Sequential series     (b) Staggered series 

Figure 15. Performance indices of SVM classifier as multi-class for OS vs SF vs NF 

 

V. CONCLUSION 
 

The integration of DWT and SVM for anomaly detection and classification problem was presented in 

this paper using real-time series data of wireless sensor deployed in field environment. The signal 

processing property of DWT was utilized in fine-scale and approximate-scale extraction of 

information from data. The use of statistical features instead of series data in form of wavelet 

coefficients resulted in reduce size of input vector fed to SVM. The value of AUC as binary class was 

determined in the range of 0.9-1.0 for OS against SF, while for OS against NF, it lies between 0.75-

0.86. The robustness of SVM classifier was demonstrated for fault magnitude change and different 

noise level introduced in time series data. The detection accuracy as multi-class was also found to be 

high. The suggested approach in anomaly detection and classification is independent from heuristic 

adjustment of any parameter and does not require any domain knowledge of non-faulty data series in 

obtaining high accuracy.  
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