International Journal of Advances in Engineering & Technology, Sept 2011.
OIJAET ISSN: 2231-1963

HYBRID TRANSACTION MANAGEMENT IN DISTRIBUTED
REAL-TIME DATABASE SYSTEM

Gyanendra Kumar Gupta', A. K. Sharma” and Vishnu Swaroop®
'Department of Computer Science & Engineering, KIT, Kanpur, U.P., India.

2&3Department of Computer Science & Engg., MMM Engg. College, Gorakhpur, U.P., India.

ABSTRACT

Managing the transactions in real time distributed computing system is not easy, as it has heterogeneously
networked computers to solve a single problem. If a transaction runs across some different sites, it may commit
at some sites and may failure at another site, leading to an inconsistent transaction. The complexity is increase
in real time applications by placing deadlines on the response time of the database system and transactions
processing. Such a system needs to process transactions before these deadlines expired. A series of simulation
study have been performed to analyze the performance under different transaction management under
conditions such as different workloads, distribution methods, execution mode-distribution and parallel etc. The
scheduling of data accesses are done in order to meet their deadlines and to minimize the number of
transactions that missed deadlines. A new concept is introduced to manage the transactions in “hybrid
transaction management” rather than static and dynamic ways setting computing parameters. This will keep the
track of the status of mix transaction static as well as dynamic so that we can improve the performance of the
system with the advantages of static as well as dynamic.

KEYWORDS: Real time system, hybrid transaction management, missed deadlines, database size.

I. INTRODUCTION

As the world become smarter and more informatics, demands on IT will grow. Many converging
technologies are coming up like rising IT delivery model-cloud computing. Demands of the real time
distributed database are also increasing. Many transaction complexities are there in handling
concurrency control and database recovery in distributed database systems. Two-phase commit
protocol is most widely used to solve these problems [1] and commit protocols are implemented in
distributed system. A uniform commitment is guarantee by a commit protocol in such system to
ensure that all the participating sites agree on a final outcome. Result may be either a commit or an
abort condition.

Many real time database applications in areas of communication system and military systems are
distributed in nature. In a real time database system the transaction processing system that is designed
to handle workloads where transactions have deadlines. A series of simulation study have been
performed to analyze the performance of the system under different transaction management
condition such as different workloads, distribution methods, execution mode-Distribution and
Parallel, impact of dynamic slack factors to throughput etc. The section 2 describes the concept of a
real time database system. The section 3 describes the transaction details. In section 4, proposed
model and their parameters are given. The detail of anticipation of result and analysis are given in
section 5. The overall conclusions are discussed in section 6.

II. REVIEW OF LITERATURE

Many database researchers have proposed varieties of commit protocols like two phase commit and
Nested two phase commit [2, 3], Presumed commit [4] and Presume abort [3], Broadcast two phase
commit , Three phase commit [5,6] etc. These require exchanges of multiple messages, in multiple

315 | Vol. 1, Issue 4, pp. 315-321

International Journal of Advances in Engineering & Technology, Sept 2011.
OIJAET ISSN: 2231-1963

phases, between the participating sites where the distributed transaction executed. Several log records
are generated to make permanent changed to the data disk, demanding some more transaction
execution time [4, 7, 8]. Proper scheduling of transactions and management of its execution time are
important factors in designing such systems.

Transactions processing in any database systems can have real time constraints. The scheduling
transactions with deadlines on a single processor memory resident database system have been
developed and evaluated the scheduling through simulation [9]. A real time database system is a
Transaction processing system that designed to handle workloads where transactions have complete
deadlines. In case of faults, it is not possible to provide such guarantee. Real actions such as firing a
weapon or dispensing cash may not be compensatable at all [10]. Proper scheduling of transactions
and management of its execution time are the important factors in designing such systems. In such a
database, the performance of the commit protocol is usually measured in terms of number of
transactions that complete before their deadlines. The transaction that miss their deadlines before the
completion of processing are just killed or aborted and discarded from the system without being
executed to completion [11].

III. TRANSACTION DETAILS

This study is in continuation of [12, 13] work in the same domain [14, 15]. The study follows the real
time processing model [16, 17, 18] and transaction processing addressing timeliness [19]. This model
has six components: (i) a source (ii) a transaction manager (iii) a concurrency control manager (iv) a
resource manager (v) a recovery manager (vi) a sink to collects statistics on the completed
transactions. A network manager models the behaviour of the communications network. The
definitions of the components of the model are given below.

3.1 The source:

This component is responsible for generating the workloads for a site. The workloads are
characterized in terms of files that they access and number of pages that they access and also update
of a file.

3.2 The transaction manager:

The transaction manager is responsible for accepting transaction from the source and modelling their
execution. This deals with the execution behaviour of the transaction. Each transaction in the
workload has a general structure consist of a master process and a number of cohorts. The master
resides at the sites where the transaction was submitted. Each cohort makes a sequence of read and
writes requests to files that are stored at its sites. A transaction has one cohort at each site where it
needs to access data. To choose the execution sites for a transaction’s cohorts, the decision rule is: if a
file is present at the originating site, use the copy there; otherwise, choose uniformly from among the
sites that have remote copies of the files. The transaction manager also models the details of the
commit and abort protocols.

3.3 The concurrency control manager:

It deals with the implementation of the concurrency control algorithms. In this study, this module is
not fully implemented. The effect of this is dependent on algorithm that chooses during designing the
system.

3.4 The resource manager:

The resource manager models the physical resources like CPU, Disk, and files etc for writing to or
accessing data or messages from them.

3.5 The sink:

The sink deals for collection of statistics on the completed transactions.

316 | Vol. 1, Issue 4, pp. 315-321

International Journal of Advances in Engineering & Technology, Sept 2011.
OIJAET ISSN: 2231-1963

3.6 The Network Manager:

The network manager encapsulates the model of the communications network. It is assuming a local
area network system, where the actual time on the wire for messages is negligible.

IV. TRANSACTION MODEL AND THEIR PARAMETER

The proposed model is discussed below. A common model of a distributed transaction is that there is
one process, called as Master, which is executed at the site where the transaction is submitted, and a
set of processes, called Cohorts, which executes on behalf of the transaction at these various sites that
are accessed by the transaction. In other words, each transaction has a master process that runs at its
site of origination. The master process in turn sets up a collection of cohort’s processes to perform the
actual processing involved in running the transaction. When cohort finishes executing its portion of a
query, it sends an execution complete message to the master. When the master received such a
message from each cohort, it starts its execution process.
When a transaction is initiated, the set of files and data items that, it will access are chosen by the
source. The master is then loaded at its originating site and initiates the first phase of the protocol by
sending PREPARE (to commit) messages in parallel to all the cohorts. Each cohort that is ready to
commit, first force-writes a prepared log record to its local stable storage and then sends a YES vote
to the master. At this stage, the cohort has entered a prepared state wherein it cannot unilaterally
commit or abort the transaction but has to wait for final decision from the master. On other hand, each
cohort that decides to abort force-writes an abort log record and sends a NO vote to the master. Since
a NO vote acts like a veto, cohort is permitted unilaterally abort the transaction without waiting for a
response from the master.
After the master receives the votes from all the cohorts, it initiates the second phase of the protocol. If
all the votes are YES, it moves to a committing state by force-writing a commit log record and
sending COMMIT messages to all the cohorts. Each cohort after receiving a COMMIT message
moves to the committing state, force-writes a commit log record, and sends an acknowledgement
(ACK) message to the master. If the master receives even one NO vote, it moves to the aborting state
by force writing an abort log record and sends ABORT messages to those cohorts that are in the
prepared state. These cohorts, after receiving the ABORT message, move to aborting state, force-
write an abort log record and send an ACK message to the master. Finally, the master, after receiving
acknowledgement from all the prepared cohorts, writes an end log record and then forgets and made
free the transaction. The statistics are collected in the Sink [11, 16, 17, 26]. The database is modeled
as a collection of DBsize pages that are uniformly distributed across all the NumSites sites. At each
site, transactions arrive under Poisson stream with rate Arrival Rate and each transaction has an
associated firm deadline. The deadline is assigned using the formula

DT=AT+SF*RT (1)
Here DT, AT, SF and RT are the deadline, arrival rate, Slack factor and resource time respectively, of
transaction T. The Resource time is the total service time at the resources that the transaction requires
for its execution. The Slack factor is a constant that provides control over the tightness or slackness of
the transaction deadlines.
In this model, each of the transaction in the supplied workload has the structure of the single
master and multiple cohorts. The number of sites at which each transaction executes is
specifying by the File selection time (DistDegree) parameter. At each of the execution sites,
the number of pages accessed by the transaction’s cohort varies uniformly between 0.5 and
1.5 times Cohort Size. These pages are chosen randomly from among the database pages
located at that site. A page that is read is updated with probability of WriteProb. Summary of
the simulation parameter is given in table L.
Parameter Settings
The values of the parameter set in the simulation are given in table II. The CPU time to process a page
is 10 milliseconds while disk access times are 20 milliseconds.

317 | Vol. 1, Issue 4, pp. 315-321

International Journal of Advances in Engineering & Technology, Sept 2011.

OIJAET ISSN: 2231-1963
Table 1. Proposed model parameters
Parameters Description
NumSites or Selectfile Number of sites in the Database
Dbsize_generating_site Number of pages in the database at same location.
Dbsize_remote_site Number of pages in the database at remote location.
ArrivalRate Transaction arrival rate/site
Slackfactor Slack factor in Deadline formula
FileSelection Time Degree of Freedom (DistDegree)
WriteProb Page update probability
PageCPU CPU page processing time
PageDisk Disk page access time
Terminal Think Time between completion of transaction & submission of
another
Numwrite Number of Write Transactions
NumberReadT Number of Read Transactions

Table II. Assumed values of proposed model parameters

Parameters Set Values Parameters Set Values
NumSites 8 FileSelection Time 3
Dbsizevary Max. 200 for PageCPU 10ms

generating site and
2200 for remote site

ArrivalRate 6 to 8 job/sec PageDisk 20ms
Slackfactor 4 Terminal Think 01t0 0.5 sec
WriteProb 0.5 Numwrite/Number Read T vary

V. ANTICIPATION OF RESULTS

The experiment has to be perform using different simulation language like C++Sim, DeNet etc. For
this study, GPSS World can be use as a simulator [20]. Literatures are also collected from several
recent studies [21, 22, 23, 24, 25, and 26]. The study for performance evaluation starts by first
developing a base model. Further experiments were constructed around the base model experiments
by varying a few parameters and process of execution at a time.

The performance metric of the experiments is Miss Percent that is the percentage of input transaction
that the system is unable to complete before their deadline. A study can be analyzing the performance
of the system under different workload with varying the arrival rate of the transaction, dynamic slack
factors, execution mode etc. A study can be analyzed the performance using this new concept of
transaction to manage the transactions in “hybrid transaction management” rather than static and
dynamic ways setting computing parameters technique along with varying database size for
generating site and remote site technique. The anticipated experimental results are discussed below.
5.1. Comparison of Centralized and Distributed systems

This anticipated experiment compares the performance of the system under centralized and distributed
[13]. The distributed systems have higher percentage of miss Transactions than centralized system.
This higher miss percentage is due to distance between cohorts. This leads to design of a new perfect
distributed commit processing protocol to have a real-time committing performance.

5.2. Impact of distribution methods

This anticipated experiment is to be conducted to know the impact of difference between distribution
methods to the performance of the system [13]. As an example, we take Exponential distribution and
Poisson distribution. The assignment and committing of transactions to cohorts are passed under
scheduler using Exponential distribution and Poisson distribution and the statistics of the simulation
outputs are to be noted. The Exponential might give more uniform assignment and committing of
transactions than Poisson. Poisson might throws higher numbers of transactions giving more
collisions of transactions and large number miss percentage of transactions than Exponential. So on
many experiments of such similar types might be conducted by using more different distribution rules.

318 | Vol. 1, Issue 4, pp. 315-321

International Journal of Advances in Engineering & Technology, Sept 2011.
OIJAET ISSN: 2231-1963

5.3. Impact execution mode: Distribution and Parallel

This anticipated experiment compares the output of the system putting the cohorts in parallel with that
of distribution execution [13]. From this we might conclude following points. Parallel execution of
the cohorts might reduce the transaction response time. The time might require for the commit
processing is partially reduced. This is because the queuing time is shorted in parallel and so there are
much fewer chances of a cohort aborting during waiting phase.

5.4. Impact of slack to Throughput

In this set of experiments, the impact of slack factor to observed on the throughput of the system [13].
The throughput initially might decreases with increase in slack factor due to constraint of distributed
real time database. Still there are lots more to study required about other parameters to improve the
throughput of the overall system.

5.5. Transaction Management

The transactions can be managed in many different ways. In most of the earlier work done simply
static or dynamic ways with only database size computing [13,26]. A new concept is introduced to
manage the hybrid transactions management with database size for originating site and remote site
rather than database size computing parameters, where the values of the parameters are changes or
adjust automatically depending on the requirements during the execution the experiment.

VI. CONCLUSIONS

A series of simulation study have been performed to analyze the performance under different
transaction management situation such as different workloads, distribution methods, execution mode-
Distribution and Parallel, impact of dynamic slack factors to throughput. The scheduling of data
accesses are done in order to meet their deadlines and to minimize the number of transactions that
missed deadlines.

Parallel execution of the cohorts reduces the transaction response time than that of serial or distributed
execution. The time required for the commit processing is partially reduced, because the queuing time
is shorted in parallel and so there are much fewer chances of a cohort aborting during waiting phase.
The throughput initially increases with increase in slack factor. But it drops rapidly at very high work
loads. The slack factors can be providing by static or dynamics ways.

A new concept is introduced to manage the hybrid transactions in database size for originating site
and remote site rather than database size computing parameters. With this approach, the system gives
a significant improvement in performance. This approach will keep tracks of timing of the
transactions to help them from aborts. This approach will give advance information about the
remaining execution time of the transactions. This will help the system to inject extra time to such
transactions with the merit of static as well as dynamic ways with the track and does recording of the
status of the status of failing transaction so that we can provide an extra slack time to improve the
performance of the system. In all the conditions the arrival rate of transaction plays a major role in
reducing number of miss percentage and improved performance.

REFERENCES

[1] Silberschatz, Korth, Sudarshan, 2002, Database system concept,4th (I.E), McGraow-Hill Pub. 698-
709,903

[2] Gray. J, 1978,“Notes on Database Operating Systems”, Operating Systems:An Advanced Course,

Lecture notes in Computer Science
[3] Mohan, C, Lindsay B and Obermark 1986, Transaction Management in the R* Distributed Database
Management Systems, ACM TODS, 11(4).

[4] Lampson B and Lomet D, 1993, “A new Presumes Commit Optimization for Two phase Commit”,
Pro.of 19th VLDB Conference.

[5] Oszu M, Valduriez P, 1991, Principles of Distributed Database Systems, Prentice-Hall.

[6] Kohler W, 1981, A survey of Techniques for Synchronization and Recovery in Decentralized

Computer System, ACM Computing Surveys, 13(2)

319 | Vol. 1, Issue 4, pp. 315-321

International Journal of Advances in Engineering & Technology, Sept 2011.
OIJAET ISSN: 2231-1963

(71

Nystrom D, Nolin M, 2006, Pessimistic Concurrency Control and Versioning to Support Database
Pointers in Real-Time Databases, Proc. 16th Euromicro Conf. on Real-Time Systems

[8] Ramamritham,Son S. H, and DiPippo L,2004, Real-Time Databases and Data Services, Real-Time
Systems J., vol. 28, 179-216.

[9] Robert A and Garcia-Molina H, 1992, Scheduling Real-Time Transactions, ACM Trans. on Database
Systems, 17(3).

[10] Levy E., Korth H and Silberschatz,1991,An optimistic commit protocol for distributed transaction
management, Pro.of ACM SIGMOD Conf.

[11] Jayant. H, Carey M, Livney,1992, “Data Access Scheduling in Firm Real time Database Systems”,
Real Time systems Journal, 4(3)

[12] Jayanta Singh and S.C Mehrotra et all, 2010,“Management of missed transaction in a distributed
system through simulation”, Proc. Of IEEE.

[13] Udai Shanker, “Some Performance Issues In Distributed Real Time Database System”, PhD Thesis,
Computer Science and Engineering Department M.M.M.E.C, Gorakhpur, December, 2005.

[14] Jayanta Singh and S.C Mehrotra, 2006, “Performance analysis of a Real Time Distributed Database
System through simulation” 15th IASTED International Conf. on APPLIED SIMULATION &
MODELLING, Greece

[15] Jayanta Singh and S.C Mehrotra, 2009 "A study on transaction scheduling in a real-time distributed
system”,EUROSIS’s Annual Industrial Simulation Conference, UK.

[16] Jayant H. 1991, “Transaction Scheduling in Firm Real-Time Database Systems”, Ph.D. Thesis,
Computer Science Dept. Univ. of Wisconsin, Madison.

[17] Jayant H. Carey M and Livney M, 1990 “Dynamic Real-Time Optimistic Concurrency Control”, Proc.
of 11th IEEE Real-Time Systems Symp.

[18] Jayant H., Ramesh G. Kriti.R, S. Seshadri, ”Commit processing in Distributed Real-Time Database
Systems”, Tech. Report-TR-96-01, Pro. Of 17th IEEE Real-Time Systems Symposium, USA,1996

[19] Han Q, 2003, Addressing timeliness /accuracy/ cost tradeoffs in information collection for dynamic
environments, IEEE Real-Time System Symposium,Cancun, Mexico

[20] Minutesmansoftware, GPSS world, North Carolina, U. S. A. 2010.

[21] Xiong M. and Ramamritham K., 2004, Deriving Deadlines and Periods for Real-Time Update
Transactions, IEEE Trans. on Computers, vol. 53,(5).

[22] Gustavsson S and Andler S 2005, Decentralized and continuous consistency management in distributed
real-time databases with multiple writers of replicated data, Workshop on parallel and distributed real-
time systems, Denver, CO

[23] Xiong M, Han S., and Lam K, 2005, A Deferrable Scheduling for Real-Time Transactions Maintaining
Data Freshness, IEEE Real-Time Systems Symposium.

[24] Jan Lindstrom, 2006 "Relaxed Correctness for Firm Real-Time Databases," rtcsa, pp.82-86, 12th IEEE
International Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA'06).

[25] Idoudi, N. Duvallet, C. Sadeg, B. Bouaziz, R. Gargouri, F,2008, Structural Model of Real-Time
Databases: An Illustration, 11th IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC 2008).

[26] Jayanta Singh and S.C Mehrotra et al, 2010, “Dynamic Management of transactions in a distributed
real-time processing system”, International Journal of Database Management Systems, Vol.2, No.2,
May 2010.

Authors Profile

Gyanendra Kumar Gupta received his Master degree in Computer Application in year
2001 and M.Tech in Information Technology in year 2004. He has worked as Faculty in

different reputed organizations. Presently he is working as Asst. Prof. in Computer Science
and Engineering Deptt. , KIT, Kanpur. He has more than 10 years teaching experience and

—
=

=%

3 years industry experience. His area of interest includes DBMS, Networks and Graph ‘f_.
Theory. His research papers related to Real Time Distributed Database and Computer

Network are published in several National & International Conferences. He is pursuing his PhD in Computer

Science.

A.K. Sharma received his Master degree in Computer Science in year 1991 and PhD
degree from IIT, Kharagpur in year 2005. Presently he is working as Associate Professor in
Computer Science and Engineering Department, Madan Mohan Malaviya Engineering
College, Gorakhpur. He has more than 23 years teaching experience. His areas of interest

include Database Systems, Computer Graphics, and Object Oriented Systems. He has §!
published several papers in National & International conferences & journals.

320 | Vol. 1, Issue 4, pp. 315-321

International Journal of Advances in Engineering & Technology, Sept 2011.
OIJAET ISSN: 2231-1963

Vishnu Swaroop received his Master degree in Computer Application in year 2002 presently
he is working as Computer Programmer in Computer Science and Engineering Department,
Madan Mohan Malaviya Engineering College, Gorakhpur. He has more than 20 years
teaching and professional experience. His area of interest includes DBMS, & Networks. His
research papers related to Mobile Real Time Distributed Database and Computer Network are
published in several National & International conferences. He is pursuing his PhD in
Computer Science.

321 Vol. 1, Issue 4, pp. 315-321

