International Journal of Advances in Engineering & Technology, Sept 2011.
OIJAET ISSN: 2231-1963

A MODIFIED HOPFIELD NEURAL NETWORK METHOD FOR
EQUALITY CONSTRAINED STATE ESTIMATION

S.Sundeepl, G. MadhusudhanaRao>
1Dept.of.EEE, CMRCET, Andhra Pradesh, India.
2Dept.of.EEE, HITS Andhra Pradesh, India.

ABSTRACT

Electric power system is a highly complex and non linear system. Its analysis and control in
real time environment requires highly sophisticated computational skills. Computations are
reaching a limit as far as conventional computer based algorithms are concerned. It is
therefore required to find out newer methods which can be easily implemented on dedicated
hardware. It is a very difficult task due to complexity of the power system with all its
interdependent variables, thus making the neural networks one of the better options for the
solution of different issues in operation and control. In this project an attempt has been made
to implement ANN’s for State Estimation. A Hopfield neural network model has been
developed to test Topological Observability of Power System and it is tested on two different
test systems. The results so obtained, are comparable with those results of conventional root
based observability determination technique. Further a Hopfield model has been developed
to determine State Estimation of power system. State Estimation of 6 bus and IEEE 14 bus
system is attempted using this Hopfield neural network.

KEYWORDS: State Estimation, Hopfield neural network, Observability, Electrical power
systems, conventional algorithms.

I. INTRODUCTION

State Estimation processes a set of measurements to obtain the best estimate of the current state of the
power system. The set of measurements includes telemetered measurements and pseudo-
measurements. Telemetered measurements are the online telemetered data of bus voltages, line flows,
injections, etc. Pseudo-measurements are manufactured data such as guessed MW generation or
substation load demand based on historical data, in most cases. Telemetered measurements are subject
to noise or error in metering, communication system, etc. The errors of some of the pseudo-
measurements, especially the guessed ones, may be large. However, there is a special type of pseudo-
measurements, known as the zero injections, for which the information contains no error. Zero
injection occurs at a node, for example, representing a switching station where the power injection is
equal to zero. Zero injection is an inherent property of such a node and no meter need to be installed
but the information is always available. A state estimation algorithm must compute estimates, which
satisfy exactly such constraints, independent of the quality of online measurements. The enforcing of
constraints is in particular useful in networks, consisting of large unobservable parts of network or
having very low measurement redundancy.

In its conventional form, the Weighted Least Square method does not enforce the equality and limit
constraints explicitly. However, the constraints contain reliable information about physical restrictions
and equipment limits and can be used to increase the quality of state estimation result. The zero
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injections can be represented by a set of equalities. Various methods have been proposed to process
constraints, literature review section lists some of the proposed methods for solving equality
constrained State Estimation problem.
Various algorithms of State Estimation using the conventional computer are reaching a limit as far as
the solution techniques are concerned, and as long as these computer based algorithms are used, faster
methods cannot be expected. However for security monitoring and control in power system,
improvement in calculation time is always desired in order to obtain necessary information more
quickly and accurately.
In recent years, it has been found that Artificial Neural Networks (ANN’s) are well suited as
computational tools for solving certain classes of complex problems, although software
implementations of the algorithm on general-purpose computers can be too slow for time-critical
applications, but the small number of computational ‘primitives’, suggests advantages of hosting
ANN’s on dedicated Neural Network Hardware (NNH) to maximize performance at a given cost
target. ANN computations may be carried out in parallel, and special hardware devices are being
designed and manufactured which take advantage of this capability.
In this chapter a new method for enforcing equality and limit constraints in State Estimation algorithm
using a modified Hopfield neural network is presented. This method is tested for 6 bus system and
IEEE 14 bus system. The main advantages of using the modified Hopfield neural network proposed in
this work are

» The internal parameters of the network are explicitly obtained by the valid-subspace

technique of solutions
» Lack of need for adjustment of penalty factors for initialization of constraints
» For real time application, the modified Hopfield network offers simplicity of implementation
in analog hardware or a neural network processor
» Training and testing of the neural network under human supervision is not required.

II. STATE ESTIMATION WITH CONSTRAINTS

State vector of an electric network consists of the complex voltages at the buses. Unmeasured tap
positions of transformers may also be included into the state vector. A measurement vector consists of
power flows, power injections, voltage and current magnitudes and tap positions of transformers. For
a N bus system, the state vector X=[5,V]", of dimension n=2N-1, consists of the N-1 bus voltage
angles d; with respect to a reference bus and the N bus voltage magnitudes V; for i=1,2,3,....N.
The static state estimator measurement model is given as:
z=h(X) +€ . (D)
Where z is the measurement vector, h(.) is a vector of nonlinear functions, relating the measurement
and state vectors, and ¢ is the vector of measurement errors.
The error-free data are modeled as equality constraints
2(X)=0 ...(2)
Limits on some network variables are modeled as inequality constraints which can be expressed in a
compact form by p-dimensional functional inequalities
f(x)<0 ...03)
General nonlinear programming algorithms for the solution of a constrained minimization problem [2]
are not efficient enough for the on-line application. Hence a neural network approach is used for
solving this nonlinear programming problem.

2.1. Objective function

The objective is to minimize the weighted squared mismatch between measured and calculated
quantities. Considering system to be observable and with m>n , where m is the total number of
measurements and n is the number of state variables , the mathematical problem is given as follows:

min [Z-h(X)]'"R[Z-h(X)] @)

Subject to the equality and inequality constraints as defined below. The diagonal matrix R
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represents the weights of the individual measurements in the objective function.

2.2. Equality constraints

Power flow equations, corresponding to both real and reactive power balance are the equality
constraints for all the buses characterized as zero injections, which can be expressed as follows:.

Nh Nb
P=>"V.V, (g,,cosd,, +b,, sind, )=0 .. (5Q=)_ V.V, (g,sind,, b, cosd, )=0 ... (6)
m=1 m=1

For i € ( set of zero injection buses)

Where

P; =Real power injection at bus-i
Q; = Reactive power injection at bus-i
V; = Voltage magnitude at bus-i

&; = Load angle at bus-i
Y; = gii+b;=i-j" element of Y-bus Matrix.

N, Ni, N,=number of total buses, load buses and generator buses in the system respectively.

2.3. Inequality Constraints:

(i) Voltage Limit: This includes upper (V;"™*) and lower (V;™" ) limits on the bus voltage magnitude.
ViV SV i=1,2,.......N, ¢

(ii) Phase Angle Limits: The phase angle at each bus should be between lower (8,™") and upper (5™
limits.

& <5 <g™ =12 N, . (8)

These limits may vary depending upon the problem under consideration. Imposing phase angle limits
at load buses is another way of limiting the power flow in the transmission lines and for generator
buses this limiting is done for stability reasons. Along with the above two constraints the following
constraints can also be imposed.

(a) Line Flow Limit, representing the maximum power flow in a transmission line and is usually
based on thermal and dynamic stability considerations. Let P;;"™ be the maximum active power flow
in line-i respectively. The line flow limit can be written as

P™ >P, =12 N, . (9)

(b) Reactive Power Generator Limit: Let Q™" and Q™" are the minimum and maximum
reactive power generation limit of the reactive source generators (N,) respectively.

Q"<Q<q" i=12.....N, .. (10)
III. THE MODIFIED HOPFIELD NEURAL NETWORK

Artificial neural networks attempt to achieve good performance via dense interconnection of simple
computational elements. Hopfield networks [1] are single-layer networks with feedback connections
between nodes. In the standard case, the nodes are fully connected. The node equation for the
continuous-time network with n-neurons is given by:

ui(t):—n.ui(t)+zn:Tij.vj(t)+iib ... (1D
j=1

vi(t) = g(ui(V) . (12)
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Where uj(t) is the current state of the i™ neuron, vj(t) is the output of the jth neuron., i’ is the offset bias
of the i"™ neuron., n.u;(t) is the passive decay term, and Tjiis the weight connecting the " neuron to i"
neuron. In Eqn. (12), g(u;(t)) is a monotonically increasing threshold function that limits the output of
each neuron to ensure that network output always lies in or within a hypercube. It is shown in [3] that
the equilibrium points of the network correspond to values of v(t) for which the energy function
associated with the network is minimized:

E(t):-% v(t) . T.v()-v(t)".i° ... (13)

Mapping of constrained nonlinear optimization problems using a Hopfield network consists of
determining the weight matrix T and the bias vector i’ to compute equilibrium points. Some mapping
techniques codes the validity constraints as terms in the energy function which are minimized when
the constraints (E™"; = 0) are satisfied :

E()=E™ ()+b,.E®™ ()+b, E“"™ (... ... (14)
Where E*(t) represents the objective function to be optimized and E“™ represents the constraints

of the problem. The b; parameters in Eqn. (14) are constant weightings given to various energy terms.
The multiplicity of terms in the energy function tends to frustrate one another, and success of the
network is highly sensitive to the relative values of b; .It has been shown in [3] that the E® and E™™
terms in Eqn. (14) can be separated into different subspaces so that they no longer frustrate one
another. A modified energy function E'(t) can be defined as follows:

E'(t) = E“"(t)+E® (1) .. (15)
Where E©" (t) is a confinement term that groups all the constraints imposed by the problem, and
E(t) is an optimization term that conducts the network output to the equilibrium points. Thus, the
minimization of E'(t) of the modified Hopfield network is conducted in two stages:
1): minimization of the term E<™ (t) :

E®™ (t)=-% v(O) . T v(t)-v(t)" i ... (16)

Where: v(t) is the network output, T is weight matrix and i®"is bias vector belonging to

Econf (t) )

2): minimization of the term E® (t) :
E*® (t):—% V()T T.v(t)-v(t)" i ..(17)

Where: T is weight matrix and i is bias vector belonging to E°°. This minimization moves v(t)
towards an optimal solution (the equilibrium points).

Thus, the operation of the modified Hopfield network can be summarized as combination of three
main steps, as shown in Fig. 1:

Step (1): Minimization of E®™ Corresponding, to the projection of v(t) in the valid subspace defined
by [4,5]:

V(=T v(t)+i <" ... (18)
Where: T is a projection matrix such that T T"=T" and i“"is defined such

that T i =0 . This operation corresponds to an indirect minimization of E“"(t).

Step (2): Application of a nonlinear 'symmetric ramp' activation function constraining v(t) in a
hypercube

min : min
g(v)=v if vy,

=v, if v <y <v™
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max if max

V.>V

max ]

Where vie [ v?™, Vv

! 1] 2]

| |
v(t)=T°°”f.v(t)+i°°"'J:"£_-I'"_ ! >

Av [3]

Av=A(T™v+i")

<

Figure-1: Modified Hopfield Neural Network

Step (3): Minimization of E®®, which involves updating of v(t) so as to direct it to an optimal solution
(defined by T and i*®) corresponding to network equilibrium points, which are the solutions for the
constrained optimization problems. Using the symmetric ramp activation function and v = 0, Eqn.
(12) becomes.

v(H=g(u(®)=u(t
Comparing Eqn. (11) and Eqn. (16),

% =v=-ALNE” (V)=AU(T® v+i®) Av=Atv ... (19)

Therefore, minimization of E® consists of updating v (t) in the opposite direction to the gradient of
E®. Each iteration has two distinct stages. First, as described in Step (iii) v is updated using the
gradient of the term E® alone. Second, after each updating, v is directly projected in the valid
subspace. In the next section, the parameters T, i, T and i® are defined.

IV. FORMULATION OF STATE ESTIMATION PROBLEM BY
MODIFIED HOPFIELD NETWORK METHOD

Consider the following nonlinear optimization problem:
Minimize

1 Tp -1
EOP(X)=f(X)=§[Z—h(X)] R [Z-h(X)] ... 20)

Where X= [8,V], z =measurement vector and h(X) represent nonlinear relationship between state
vector x and z,
Subject to  E“™ (X): h; (X) =0,

i.e P;=0 and Q;=0 ... 21D
For i€ (buses identified as zero injections)
me.S V S Vmax
ML ... (22)

Where V, V™" V™ § §™* §™" ¢ R" and all first and second order partial derivatives of f(X) and
hy(X) exist and are continuous. The conditions in Eqn.( 21) and (22) define a bounded convex
polyhedron. The vector x must remain within this polyhedron if it is to represent a valid solution for
the optimization problem (Eqn.20). However if inequality constraints are also present, they must be
transformed into equality constraints by introducing a slack variable s,, for each inequality constraints
prior to calculating the parameters T andi" . It is to be noted here that E® does not depend on
the slack variables s,,. A projection matrix to the system can be shown as [6].

T =[1-Vh(X)".(Vh(X).Vh(X)") " .Vh(X)] ... (23)
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where

n,(X) a0 an(X) |

ox, ox, Ix

oh, (X) 3, (X) n,X

Vh(X)=|"0ox, “ax, 7, % .. (24)
oh (X) 9h (X) 9 (0
axl axz aXN ]

Inserting the value of T from Eqn. (23) into Eqn. (18).
X =[I-Vh(X)".(Vh(X).Vh(X)")" Vh(X)]. X +i™ ... (25)
By the definition of the Jacobian, when X leads to equilibrium point h(X) may be approximated as
follows:
H(X) =h(Xc)+J.(X-Xc) ... (26)

where J=V h(X)
In the proximity of the equilibrium point Xc=0,

[N

limy, . —— =0 .. (27)
X1
Finally from Eqns. (25-27), X can be written as
X=X -V hX)".((VhX).VhX)H" ).h(X) .. (28)

Parameters T and i’ in this case are such that the vector X is updated in the opposite gradient
direction of the energy function E®. Since Eqns. (21) and (22) define a bounded convex polyhedron,
the objective function (20) has a unique global minimum. Thus, the equilibrium points of the network
can be calculated by assuming the following values of T’ and i,

|:8f(X) A (X) Bf(X):|
R —

N [IETTTTTTTTTTTTTTes N

oxl  ox2 oxN
=0

4.1 Estimation Algorithm
The steps followed have been given as under:
Step 1: Get the system data, measurements and define the zero injection buses together with boundary
limits on the state variables.
Step 2: Select an initial erroneous state vector, tolerance limit and set the iteration count.
Step 3: Calculate the objective function and say it f(X)q.
Step 4: Calculate P; and Q; corresponding to equality constrained buses.

.. (29)

Step 5: Find MW(X) by differentiating zero injection equations w.r.t. State variables using load flow

equations.

Step 6: Calculate updated state variables by Eqn. (28).

Step7: Enforce the boundary limits by passing the state variables through a symmetrical ramp
activation function defined by limits [Vax, Vinin] and [Smax, Omin] corresponding to each state variable.
Step 8: Find i’ by differentiating the objective function w.r.t. state variables.

Step 9: Find AX by Eqn. (19) and update X computed in step 7.

Step 10: Find the mismatch vector between measurements and calculated values and get its weighted
squared sum to find out the new objective function value and find the difference between f(X),., and
f(X)ou. If this difference is less than tolerance go next step, else go to step 3 after increasing the
iteration count.

Stepl1: Display the results and Stop.

V. RESULTS

In this chapter 6 bus system and IEEE 14 bus system are used for simulation. The true values were
obtained by the result of load flow calculation, and the measurement values were obtained by adding
(sigma=0.01) errors to those values. As equality constraints, nodes with zero power injections (nodes
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with no load and no generators) are taken.

5.1 Six bus system

The measurement set base value for the 6 bus system is shown in Fig. 2 and table (1). Busno 3 and 4

are characterized as zero injection buses.

Hopfield method Non linear SE

Bus No. \% ) \% )

1 1.0503 0 1.0482 0
2 1.0494 -4.7065 1.0469 -4.7832
3 0.9892 -7.6059 0.9854 -7.2324
4 1.0503 -3.8441 1.0513 -3.7833
5 0.9656 -6.9388 0.9729 -6.0465
6 0.9683 -8.8593 0.9691 -8.4704

Table 1

Measurements Type Buses P Q
7 Injection 1 0.9740 -0.0661
7 Injection 2 0.5005 0.5075
Z3 Injection 5 -.7007 -0.7007
74 Injection 6 -.7007 -0.7007
Zs Line flow 1-2 0.2880 -0.1550
Zs Line flow 1-4 0.2830 -0.0880
Z7 Line flow 1-5 0.4010 0.1760
73 Line flow 2-3 0.2310 0.1940
Zg Line flow 2-4 -0.090 -0.0700
Z10 Line flow 2-5 0.2060 0.2110
71 Line flow 2-6 0.4320 0.0440
Z1o Line flow 3-5 0.0110 0.0520
713 Line flow 3-6 0.2150 0.1810
Z14 Line flow 4-5 0.1890 0.0900
715 Line flow 5-6 0.073 -0.044

4 *
® Line flow

The estimated state using the method with equality constraints are as shown in table 2

iinjection measurements

<L zero injections

Figure 2: Measurement set for 6 bus system

Table 2
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Hopfield method Non linear SE
Bus No. A\ I} A\ I}
1 1.0503 0 1.0482 0
2 1.0494 -4.7065 1.0469 -4.7832
3 0.9892 -7.6059 0.9854 -7.2324
4 1.0503 -3.8441 1.0513 -3.7833
5 0.9656 -6.9388 0.9729 -6.0465
6 0.9683 -8.8593 0.9691 -8.4704
Table 3 shows the errors of the estimate values.
Table 3
Measurements AP AQ
Z -0.021 0.0051
75 0.0068 0.0005
73 0.0037 -0.0003
Z4 0.0077 -0.0093
Zs -0.0083 0.0008
Zg -0.0068 -0.0013
77 -0.006 -0.0022
73 -0.0021 -0.0014
Zg 0.0046 -0.0131
Z10 -0.0001 -0.0016
71 -0.0033 -0.0233
712 0.0012 -0.0038
713 -0.0027 0.002
Z14 -0.0011 -0.0036
715 -0.0019 -0.0007

The energy mismatch delta E was used for the convergence criteria with the tolerance 10°%. The time
step used was At=10" in Eq. (19). The convergence characteristics of the energy function with
respect to number of iterations is shown in Fig. 3.

energy value

5.2 IEEE 14 bus system
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Figure 3: Convergence of energy function

The measurement set base value for the IEEE 14 bus system is shown in Fig. 4 and table (4).
Bus no 5 and 7 are characterized as zero injection buses. The energy mismatch delta E was
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used for the convergence criteria with the tolerance 10™.
The time step used was delta t=10"".

a3 T 20 1i—

1

@'T T@ :_T_-

SR lo

~M
w5l
@ Lt 4
1 3 ® Line flow
@ L @ -T_ zero injections
©) ©)

Tinjection measurement

Figure 4: Measurement set for IEEE 14 bus system

Table: 4
Measurements Type Buses P Q
7, Injection 1 2.2462 -0.1722
7, Injection 2 0.1823 0.2535
73 Injection 3 -0.9453 0.0426
7, Injection 4 -0.4783 0.0704
Zs Injection 6 -0.1129 0.0344
Z4 Injection 8 0.000 0.1733
77 Injection 9 -0.2955 0.0234
7g Injection 10 -0.0922 -0.0635
Zg Injection 11 -0.0327 -0.0125
Z10 Injection 12 -0.061 -0.016
711 Injection 13 -0.1366 -0.0605
Z12 Injection 14 -0.1487 -0.0489
Z13 Line flow 1-2 1.5196 -0.1628
Zi4 Line flow 1-5 0.7265 0.0479
Zis Line flow 2-3 0.7243 0.0603
Z16 Line flow 2-4 0.5447 -0.0123
Z17 Line flow 2-5 0.3926 0.0099
713 Line flow 3-4 -0.2437 0.036
Z19 Line flow 4-5 -0.6384 0.139
750 Line flow 4-7 0.2806 -0.1972
7)1 Line flow 4-9 0.1607 -0.0579
7y Line flow 5-6 0.444 -0.1794
753 Line flow 6-11 0.0737 0.035
Zoa Line flow 6-12 0.0784 0.0256
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755 Line flow 6-13 0.1791 0.0745
Zs6 Line flow 7-8 0.000 -0.1688
Zy7 Line flow 7-9 0.2805 0.0714
Z)g Line flow 9-10 0.0521 0.0428
Zr9 Line flow 9-14 0.0936 0.0348
730 Line flow 10-11 -0.0402 -0.021
731 Line flow 12-13 0.0166 0.008
73 Line flow 13-14 0.0568 0.0177

Table 5: The state estimation results
Hopfield method Non linear SE

Bus No. \'% o \ )
1 1.060 0 1.060 0
2 1.045 -4.731 1.045 -4.98
3 1.010 -12.309 1.010 -12.74
4 1.022 -9.615 1.019 -10.28
5 1.024 -8.046 1.020 -8.76
6 1.071 -12.68 1.070 -12.52
7 1.062 -12.080 1.062 -12.15
8 1.090 -11.922 1.090 -12.08
9 1.055 -13.481 1.056 -13.48
10 1.051 -13.553 1.051 -13.55
11 1.058 -13.167 1.057 -13.15
12 1.057 -13.296 1.055 -13.07
13 1.051 -13.443 1.050 -14.44
14 1.037 -14.258 1.036 -15.12

Table 6 shows the errors of the estimate values for proposed method and Non Linear WLS method.

Table: 6
HOPFIELD METHOD NR WLS METHOD
Measurements AP AQ AP AQ
7 0.0061 -0.0046 0.0037 -0.0019
7 0.0042 -0.0066 -0.0018 -0.0061
73 0.0018 -0.0025 -0.0028 0.0028
Z4 0.0017 0.0023 -0.0014 0.0024
Zs -0.0017 -0.0051 -0.0016 -0.0022
Zg -0.0018 0.0021 -0.0012 -0.0081
77 -0.0017 -0.0014 -0.0082 0.0126
Zg -0.0011 0.0012 -0.0028 -0.0155
Zy -0.0016 0.0022 0.0019 0.0657
Z1o -0.0021 0.0055 0.0001 0.0509
711 -0.0017 0.0016 0.0083 0.0852
YAD) -0.0023 0.0066 -0.0405 -0.0067
713 0.0275 -0.0025 0.0329 -0.0087
714 0.0329 -0.0021 0.0161 -0.0433
Zis 0.0063 -0.0016 0.0173 -0.0147
Z16 0.0316 -0.0037 0.0128 -0.0046
717 0.0305 -0.0082 0.0085 -0.0054
713 0.0237 -0.0057 -0.0058 0.0013
Zig -0.0063 -0.0138 -0.0018 0.0129
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Zy0 0.0522 0.0021 0.0096 -0.0276
2 0.0256 0.0015 0.0525 -0.0058
7y 0.0666 0.0095 0.0148 0.0499
223 0.0086 -0.0012 -0.0012 -0.0057
Zo4 0.0173 -0.0027 0.0003 -0.0046
25 0.0239 -0.0045 -0.0001 -0.0086
226 0.0181 -0.0061 0.0126 0.0074
7y 0.0308 -0.0008 0.0083 0.0016
Zo3 0.0194 -0.0019 0.0243 0.0081
Zy9 0.0204 -0.0043 0.0298 0.0043
230 0.0079 -0.0011 0.0047 -0.0075
73 -0.0034 0.0023 0.0022 0.0032
73 0.0029 -0.0014 0.0011 0.0041

The convergence characteristics of the energy function with respect to number of iterations is shown

in Fig.5

Error

500

1000

1500

lteration

Figure 5: Convergence of energy function
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