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ABSTRACT 

Electric power system is a highly complex and non linear system. Its analysis and control in 

real time environment requires highly sophisticated computational skills. Computations are 

reaching a limit as far as conventional computer based algorithms are concerned. It is 

therefore required to find out newer methods which can be easily implemented on dedicated 

hardware. It is a very difficult task due to complexity of the power system with all its 

interdependent variables, thus making the neural networks one of the better options for the 

solution of different issues in operation and control. In this project an attempt has been made 

to implement ANN’s for State Estimation. A Hopfield neural network model has been 

developed to test Topological Observability of Power System and it is tested on two different 

test systems. The results so obtained, are comparable with those results of conventional root 

based observability determination technique. Further a Hopfield model has been developed 

to determine State Estimation of power system. State Estimation of 6 bus and IEEE 14 bus 

system is attempted using this Hopfield neural network. 

KEYWORDS: State Estimation, Hopfield neural network, Observability, Electrical power 

systems, conventional algorithms. 

I. INTRODUCTION 

State Estimation processes a set of measurements to obtain the best estimate of the current state of the 
power system. The set of measurements includes telemetered measurements and pseudo-
measurements. Telemetered measurements are the online telemetered data of bus voltages, line flows, 
injections, etc. Pseudo-measurements are manufactured data such as guessed MW generation or 
substation load demand based on historical data, in most cases. Telemetered measurements are subject 
to noise or error in metering, communication system, etc. The errors of some of the pseudo-
measurements, especially the guessed ones, may be large. However, there is a special type of pseudo-
measurements, known as the zero injections, for which the information contains no error. Zero 
injection occurs at a node, for example, representing a switching station where the power injection is 
equal to zero. Zero injection is an inherent property of such a node and no meter need to be installed 
but the information is always available. A state estimation algorithm must compute estimates, which 
satisfy exactly such constraints, independent of the quality of online measurements. The enforcing of 
constraints is in particular useful in networks, consisting of large unobservable parts of network or 
having very low measurement redundancy. 
In its conventional form, the Weighted Least Square method does not enforce the equality and limit 
constraints explicitly. However, the constraints contain reliable information about physical restrictions 
and equipment limits and can be used to increase the quality of state estimation result. The zero 
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injections can be represented by a set of equalities. Various methods have been proposed to process 
constraints, literature review section lists some of the proposed methods for solving equality 
constrained State Estimation problem. 
Various algorithms of State Estimation using the conventional computer are reaching a limit as far as 
the solution techniques are concerned, and as long as these computer based algorithms are used, faster 
methods cannot be expected. However for security monitoring and control in power system, 
improvement in calculation time is always desired in order to obtain necessary information more 
quickly and accurately.  
In recent years, it has been found that Artificial Neural Networks (ANN’s) are well suited as 
computational tools for solving certain classes of complex problems, although software 
implementations of the algorithm on general-purpose computers can be too slow for time-critical 
applications, but the small number of computational ‘primitives’, suggests advantages of hosting 
ANN’s on dedicated Neural Network Hardware (NNH) to maximize performance at a given cost 
target. ANN computations may be carried out in parallel, and special hardware devices are being 
designed and manufactured which take advantage of this capability. 
In this chapter a new method for enforcing equality and limit constraints in State Estimation algorithm 
using a modified Hopfield neural network is presented. This method is tested for 6 bus system and 
IEEE 14 bus system. The main advantages of using the modified Hopfield neural network proposed in 
this work are 

� The internal parameters of the network are explicitly obtained by the valid-subspace 
technique of solutions 

� Lack of need for adjustment of penalty factors for initialization of constraints 
� For real time application, the modified Hopfield network offers simplicity of implementation 

in analog hardware or a neural network processor 
� Training and testing of the neural network under human supervision is not required. 

II. STATE ESTIMATION WITH CONSTRAINTS 

State vector of an electric network consists of the complex voltages at the buses. Unmeasured tap 
positions of transformers may also be included into the state vector. A measurement vector consists of 
power flows, power injections, voltage and current magnitudes and tap positions of transformers. For 
a N bus system, the state vector X=[δ,V]T, of dimension n=2N-1, consists of the N-1 bus voltage 
angles δi with respect to a reference bus and the N bus voltage magnitudes Vi  for i=1,2,3,....N.  
The static state estimator measurement model is given as: 

z=h(X) +є              … (1) 
Where z is the measurement vector, h(.) is a vector of nonlinear functions, relating the measurement 
and state vectors, and є is the vector of measurement errors.  
The error-free data are modeled as equality constraints 

                                       g(X)=0                  … (2) 
Limits on some network variables are modeled as inequality constraints which can be expressed in a 
compact form by p-dimensional functional inequalities 

f(x) ≤ 0                … (3) 
General nonlinear programming algorithms for the solution of a constrained minimization problem [2] 
are not efficient enough for the on-line application. Hence a neural network approach is used for 
solving this nonlinear programming problem. 

2.1. Objective function 

The objective is to minimize the weighted squared mismatch between measured and calculated 
quantities. Considering system to be observable and with m>n , where m is  the total number of 
measurements and n is the number of state variables , the mathematical problem is given as  follows: 

 
T -11

m i n R
2

[ Z -h ( X ) ] [ Z -h ( X ) ]          … (4) 

Subject to the equality and inequality constraints as defined below. The diagonal matrix 1R −  
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represents the weights of the individual measurements in the objective function. 

2.2. Equality constraints 

Power flow equations, corresponding to both real and reactive power balance are the equality 
constraints for all the buses characterized as zero injections, which can be expressed as follows:. 

 
bN

i i m im im im im
m=1

P = V V (g cosδ +b sinδ )=0∑            … (5)
bN

i i m im im im im
m=1

Q = V V (g sinδ -b cosδ )=0∑  … (6) 

For i ∈( set of zero injection buses) 

Where 

Pi   = Real power injection at bus-i 
Qi = Reactive power injection at bus-i 
Vi = Voltage magnitude at bus-i 
δi = Load angle at bus-i 
Yij = gij+bij=i-jth element of Y-bus Matrix. 

 
Nb, Nl, Ng=number of total buses, load buses and generator buses in the system respectively. 

2.3. Inequality Constraints: 

(i) Voltage Limit: This includes upper (Vi
max) and lower (Vi

min ) limits on the bus voltage magnitude. 

  min max
i i i bV V V i=1,2,........N≤ ≤                        … (7) 

(ii) Phase Angle Limits: The phase angle at each bus should be between lower (δi
min) and upper (δi

max) 
limits. 

   
min max
i i i bδ δ δ i=1,2,........N≤ ≤                        … (8) 

These limits may vary depending upon the problem under consideration. Imposing phase angle limits 
at load buses is another way of limiting the power flow in the transmission lines and for generator 
buses this limiting is done for stability reasons. Along with the above two constraints the following 
constraints can also be imposed. 
        (a) Line Flow Limit, representing the maximum power flow in a transmission line and is usually 
based on thermal and dynamic stability considerations. Let PLi

max be the maximum active power flow 
in line-i respectively. The line flow limit can be written as 

  
max
Li Li LP P i=1,2,..............N≥                … (9) 

             (b) Reactive Power Generator Limit: Let Qgi
min and Qgi

max are the minimum and maximum 
reactive power generation limit of the reactive source generators (Ng) respectively. 

   min max
gi gi gi gQ Q Q i=1,2,........N≤ ≤                … (10) 

III. THE MODIFIED HOPFIELD NEURAL NETWORK 

Artificial neural networks attempt to achieve good performance via dense interconnection of simple 
computational elements. Hopfield networks [1] are single-layer networks with feedback connections 
between nodes. In the standard case, the nodes are fully connected. The node equation for the 
continuous-time network with n-neurons is given by:  

n
b

i i ij j i
j=1

u (t)=-η.u (t)+ T .v (t)+i∑                        … (11) 

  vi(t) = g(ui(t))                                                       … (12) 
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Where ui(t) is the current state of the ith neuron, vj(t) is the output of the jth neuron., ii
b is the offset bias 

of the ith neuron., η.ui(t) is the passive decay term, and  Tij is the weight connecting the jth neuron to ith 
neuron. In Eqn. (12), g(ui(t)) is a monotonically increasing threshold function that limits the output of 
each neuron to ensure that network output always lies in or within a hypercube. It is shown in [3] that 
the equilibrium points of the network correspond to values of v(t) for which the energy function 
associated with the network is minimized: 

T T b1
E(t)=- v(t) .T.v(t)-v(t) .i

2
                       … (13) 

Mapping of constrained nonlinear optimization problems using a Hopfield network consists of 
determining the weight matrix T and the bias vector ib to compute equilibrium points. Some mapping 
techniques codes the validity constraints as terms in the energy function which are minimized when 
the constraints (Econs

i = 0) are satisfied : 
1 2cons consop

1 2E(t)=E (t)+b .E (t)+b .E (t)+....     … (14) 

Where opE (t)  represents the objective function to be optimized and consE  represents the constraints 

of the problem. The bi parameters in Eqn. (14) are constant weightings given to various energy terms. 
The multiplicity of terms in the energy function tends to frustrate one another, and success of the 
network is highly sensitive to the relative values of bi .It has been shown in [3] that the Eop and Econs 

terms in Eqn. (14) can be separated into different subspaces so that they no longer frustrate one 
another. A modified energy function E'(t) can be defined as follows:  

E'(t) = confE (t) + opE (t)                                       ... (15) 

Where confE (t) is a confinement term that groups all the constraints imposed by the problem, and 
opE (t)  is an optimization term that conducts the network output to the equilibrium points. Thus, the 

minimization of E'(t) of the modified Hopfield network is conducted in two stages: 

1): minimization of the term confE (t) : 

conf T conf T conf1
E (t)=- v(t) .T .v(t)-v(t) .i

2
         … (16) 

Where: v(t) is the network output, confT  is weight matrix and confi is  bias vector belonging to 
confE (t) .  

2): minimization of the term opE (t) : 

op T op T op1
E (t)=- v(t) .T .v(t)-v(t) .i

2      
          … (17) 

Where: Top is weight matrix and iop is bias vector belonging to Eop. This minimization moves v(t) 
towards an optimal solution (the equilibrium points).  
Thus, the operation of the modified Hopfield network can be summarized as combination of three 
main steps, as shown in Fig. 1: 
Step (1): Minimization of Econf Corresponding, to the projection of v(t) in the valid subspace defined 
by [4,5]: 

     conf confv(t)=T .v(t)+i                                 … (18) 

Where: confT  is a projection matrix such that  conf conf confT .T =T  and confi is defined such 

that conf confT .i 0= . This operation corresponds to an indirect minimization of Econf(t). 
 
Step (2): Application of a nonlinear 'symmetric ramp' activation function constraining v(t) in a 
hypercube 

min min
i i ig (v ) = v if v >v  

min max
i i= v if v v v≤ ≤  
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max max
i= v if v >v  

Where vi ∈[ min maxv , v ] 

v(t)=Tconf.v(t)+iconf+
v

[1]

[3]

[2]
v

v∆

op opv t(T .v i )∆ = ∆ +

 

Figure-1: Modified Hopfield Neural Network 

Step (3): Minimization of Eop, which involves updating of v(t) so as to direct it to an optimal solution 
(defined by Top and iop) corresponding to network equilibrium points, which are the solutions for the 
constrained optimization problems. Using the symmetric ramp activation function and η = 0, Eqn. 
(12) becomes.  
     v(t)=g(u(t))=u(t) 
Comparing Eqn. (11) and Eqn. (16),  

  
.

op op opdv
= v =-∆t.ÑE (v)=∆t(T .v+i )

dt
 

.

∆v=∆t.v    … (19) 

Therefore, minimization of Eop consists of updating v (t) in the opposite direction to the gradient of 
Eop

. Each iteration has two distinct stages. First, as described in Step (iii) v is updated using the 
gradient of the term Eop

 alone. Second, after each updating, v is directly projected in the valid 
subspace. In the next section, the parameters Tconf, iconf, Top and iop are defined. 

IV. FORMULATION OF STATE ESTIMATION PROBLEM BY 

MODIFIED HOPFIELD NETWORK METHOD 

Consider the following nonlinear optimization problem: 
Minimize    

op T -11
E (X)=f(x)= [Z-h(X)] R [Z-h(X)]

2
         … (20) 

Where X= [δ,V], z =measurement vector and h(X) represent nonlinear relationship between state 
vector x and z, 
Subject to    Econf (X):  hi (X) = 0, 
                        i.e Pi=0 and Qi=0           … (21) 
For i∈(buses identified as zero injections) 
Vmin

≤ V ≤ Vmax 
   δmin

≤ δ≤ δ
max            … ( 22) 

Where V, Vmin, Vmax, δ, δmax, δmin ∈  Rn; and all first and second order partial derivatives of f(X) and 
hi(X) exist and are continuous. The conditions in Eqn.( 21) and (22) define a bounded convex 
polyhedron. The vector x must remain within this polyhedron if it is to represent a valid solution for 
the optimization problem (Eqn.20). However if inequality constraints are also present, they must be 
transformed into equality constraints by introducing a slack variable sw for each inequality constraints 

prior to calculating the parameters confT  and confi . It is to be noted here that opE  does not depend on 
the slack variables sw. A projection matrix to the system can be shown as [6]. 
 

conf T T 1T [I h(X) .( h(X). h(X) ) . h(X)]−
= − ∇ ∇ ∇ ∇  … (23) 
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where 
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… (24) 

Inserting the value of confT from Eqn. (23) into Eqn. (18). 
T T 1 confX [I h(X) .( h(X). h(X) ) . h(X)].X i−

= −∇ ∇ ∇ ∇ +    … (25) 

By the definition of the Jacobian, when X leads to equilibrium point h(X) may be approximated as 
follows: 

            H(X) ≈ h(Xc)+J.(X-Xc)                    … ( 26) 
where J=∇ h(X) 
In the proximity of the equilibrium point Xc=0,  

             lim v
�

 vc 
||h(X)||

||X||
  = 0                       … ( 27) 

Finally from Eqns. (25-27), X can be written as 
     X=X -∇ h(X)T.(( ∇ h(X).∇ h(X)T)-1 ).h(X)                                        … ( 28) 
Parameters Top and iop in this case are such that the vector X is updated in the opposite gradient 
direction of the energy function Eop. Since Eqns. (21) and (22) define a bounded convex polyhedron, 
the objective function (20) has a unique global minimum. Thus, the equilibrium points of the network 
can be calculated by assuming the following values of Top and iop,  

iop 
= - 

f (X) f (X) f (X)
, , ................,

x1 x2 xN

∂ ∂ ∂

∂ ∂ ∂

 
  

                                              
... (29) 

          Top = 0                                                 

4.1 Estimation Algorithm 
The steps followed have been given as under: 
Step 1: Get the system data, measurements and define the zero injection buses together with boundary 
limits on the state variables. 
Step 2: Select an initial erroneous state vector, tolerance limit and set the iteration count. 
Step 3: Calculate the objective function and say it f(X)old. 
Step 4: Calculate Pi and Qi corresponding to equality constrained buses. 

Step 5: Find (h(X)∇  by differentiating zero injection equations w.r.t.  State variables using load flow 

equations. 
Step 6: Calculate updated state variables by Eqn. (28). 
Step7: Enforce the boundary limits by passing the state variables through a symmetrical ramp 
activation function defined by limits [Vmax, Vmin] and [δmax, δmin] corresponding to each state variable. 
Step 8: Find iop by differentiating the objective function w.r.t. state variables. 
Step 9: Find ∆X by Eqn. (19) and update X computed in step 7. 
Step 10: Find the mismatch vector between measurements and calculated values and get its weighted 
squared sum to find out the new objective function value and find the difference between f(X)new and 
f(X)old. If this difference is less than tolerance go next step, else go to step 3 after increasing the 
iteration count. 
Step11: Display the results and Stop. 

V. RESULTS 

In this chapter 6 bus system and IEEE 14 bus system are used for simulation. The true values were 
obtained by the result of load flow calculation, and the measurement values were obtained by adding 
(sigma=0.01) errors to those values. As equality constraints, nodes with zero power injections (nodes 
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with no load and no generators) are taken. 

5.1 Six bus system   

The measurement set base value for the 6 bus system is shown in Fig. 2 and table (1).  Bus no 3 and 4 
are characterized as zero injection buses.  

 
 Table 1 

 

1 2

365

4

Line flow

injection measurements

zero injections

 
 

Figure 2: Measurement set for 6 bus system 

 
 

The estimated state using the method with equality constraints are as shown in table 2  
Table 2 

 Hopfield method Non linear SE 

Bus No. V δ V δ 

1 1.0503 0 1.0482 0 

2 1.0494 -4.7065 1.0469 -4.7832 

3 0.9892 -7.6059 0.9854 -7.2324 

4 1.0503 -3.8441 1.0513  -3.7833 

5 0.9656 -6.9388 0.9729 -6.0465 

6 0.9683 -8.8593 0.9691  -8.4704 

Measurements Type Buses P Q 

z1 Injection 1 0.9740 -0.0661 
z2 Injection 2 0.5005 0.5075 
z3 Injection 5 -.7007 -0.7007 
z4 Injection 6 -.7007 -0.7007 
z5 Line flow 1-2 0.2880 -0.1550 
z6 Line flow 1-4 0.2830 -0.0880 
z7 Line flow 1-5 0.4010   0.1760 
z8 Line flow 2-3 0.2310 0.1940 
z9 Line flow 2-4 -0.090 -0.0700 
z10 Line flow 2-5 0.2060 0.2110 
z11 Line flow 2-6 0.4320 0.0440 
z12 Line flow 3-5 0.0110 0.0520 
z13 Line flow 3-6 0.2150 0.1810 
z14 Line flow 4-5 0.1890 0.0900 
z15 Line flow 5-6 0.073 -0.044 
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 Hopfield method Non linear SE 

Bus No. V δ V δ 

1 1.0503 0 1.0482 0 

2 1.0494 -4.7065 1.0469 -4.7832 

3 0.9892 -7.6059 0.9854 -7.2324 

4 1.0503 -3.8441 1.0513  -3.7833 

5 0.9656 -6.9388 0.9729 -6.0465 

6 0.9683 -8.8593 0.9691  -8.4704 

 
Table 3 shows the errors of the estimate values. 

Table 3 

Measurements ∆P ∆Q 

z1 -0.021 0.0051 
z2 0.0068 0.0005 

z3 0.0037 -0.0003 
z4 0.0077 -0.0093 

z5 -0.0083 0.0008 
z6 -0.0068 -0.0013 
z7 -0.006 -0.0022 

z8 -0.0021 -0.0014 
z9 0.0046 -0.0131 

z10 -0.0001 -0.0016 
z11 -0.0033 -0.0233 
z12 0.0012 -0.0038 
z13 -0.0027 0.002 
z14 -0.0011 -0.0036 

z15 -0.0019 -0.0007 
 
The energy mismatch delta E was used for the convergence criteria with the tolerance 10-02. The time 
step used was ∆t=10-04 in Eq. (19). The convergence characteristics of the energy function with 
respect to number of iterations is shown in Fig. 3. 
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Figure 3: Convergence of energy function 

5.2 IEEE 14 bus system   

The measurement set base value for the IEEE 14 bus system is shown in Fig. 4 and table (4).  
Bus no 5 and 7 are characterized as zero injection buses. The energy mismatch delta E was 
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used for the convergence criteria with the tolerance 10-05.  
The time step used was delta t=10-04. 
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Figure 4: Measurement set for IEEE 14 bus system 

Table: 4 

Measurements Type Buses P Q 

z1 Injection 1 2.2462 -0.1722 

z2 Injection 2 0.1823 0.2535 

z3 Injection 3 -0.9453 0.0426 

z4 Injection 4 -0.4783 0.0704 

z5 Injection 6 -0.1129 0.0344 

z6 Injection 8 0.000 0.1733 

z7 Injection 9 -0.2955 0.0234 

z8 Injection 10 -0.0922 -0.0635 

z9 Injection 11 -0.0327 -0.0125 

z10 Injection 12 -0.061 -0.016 

z11 Injection 13 -0.1366 -0.0605 

z12 Injection 14 -0.1487 -0.0489 

z13 Line flow 1-2 1.5196 -0.1628 

z14 Line flow 1-5 0.7265 0.0479 

z15 Line flow 2-3 0.7243 0.0603 

z16 Line flow 2-4 0.5447 -0.0123 

z17 Line flow 2-5 0.3926 0.0099 

z18 Line flow 3-4 -0.2437 0.036 

z19 Line flow 4-5 -0.6384 0.139 

z20 Line flow 4-7 0.2806 -0.1972 

z21 Line flow 4-9 0.1607 -0.0579 

z22 Line flow 5-6 0.444 -0.1794 

z23 Line flow 6-11 0.0737 0.035 

z24 Line flow 6-12 0.0784 0.0256 
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z25 Line flow 6-13 0.1791 0.0745 

z26 Line flow 7-8 0.000 -0.1688 

z27 Line flow 7-9 0.2805 0.0714 

z28 Line flow 9-10 0.0521 0.0428 

z29 Line flow 9-14 0.0936 0.0348 

z30 Line flow 10-11 -0.0402 -0.021 

z31 Line flow 12-13 0.0166 0.008 

z32 Line flow 13-14 0.0568 0.0177 
 

Table 5: The state estimation results 
 Hopfield method Non linear SE 

Bus No. V δ V δ 

1 1.060 0 1.060 0 

2 1.045 -4.731 1.045 -4.98 

3 1.010 -12.309 1.010 -12.74 

4 1.022 -9.615 1.019 -10.28 

5 1.024 -8.046 1.020 -8.76 

6 1.071 -12.68 1.070 -12.52 

7 1.062 -12.080 1.062 -12.15 
8 1.090 -11.922 1.090 -12.08 

9 1.055 -13.481 1.056 -13.48 

10 1.051 -13.553 1.051 -13.55 

11 1.058 -13.167 1.057 -13.15 

12 1.057 -13.296 1.055 -13.07 

13 1.051 -13.443 1.050 -14.44 

14 1.037 -14.258 1.036 -15.12 
 
Table 6 shows the errors of the estimate values for proposed method and Non Linear WLS method. 

Table: 6 

 HOPFIELD METHOD NR WLS METHOD 

Measurements ∆P ∆Q ∆P ∆Q 
z1 0.0061 -0.0046 0.0037 -0.0019 
z2 0.0042 -0.0066 -0.0018 -0.0061 
z3 0.0018 -0.0025 -0.0028 0.0028 
z4 0.0017 0.0023 -0.0014 0.0024 
z5 -0.0017 -0.0051 -0.0016 -0.0022 
z6 -0.0018 0.0021 -0.0012 -0.0081 
z7 -0.0017 -0.0014 -0.0082 0.0126 
z8 -0.0011 0.0012 -0.0028 -0.0155 

z9 -0.0016 0.0022 0.0019 0.0657 
z10 -0.0021 0.0055 0.0001 0.0509 

z11 -0.0017 0.0016 0.0083 0.0852 
z12 -0.0023 0.0066 -0.0405 -0.0067 
z13 0.0275 -0.0025 0.0329 -0.0087 
z14 0.0329 -0.0021 0.0161 -0.0433 
z15 0.0063 -0.0016 0.0173 -0.0147 

z16 0.0316 -0.0037 0.0128 -0.0046 
z17 0.0305 -0.0082 0.0085 -0.0054 

z18 0.0237 -0.0057 -0.0058 0.0013 
z19 -0.0063 -0.0138 -0.0018 0.0129 
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z20 0.0522 0.0021 0.0096 -0.0276 

z21 0.0256 0.0015 0.0525 -0.0058 
z22 0.0666 0.0095 0.0148 0.0499 

z23 0.0086 -0.0012 -0.0012 -0.0057 
z24 0.0173 -0.0027 0.0003 -0.0046 
z25 0.0239 -0.0045 -0.0001 -0.0086 

z26 0.0181 -0.0061 0.0126 0.0074 
z27 0.0308 -0.0008 0.0083 0.0016 

z28 0.0194 -0.0019 0.0243 0.0081 
z29 0.0204 -0.0043 0.0298 0.0043 

z30 0.0079 -0.0011 0.0047 -0.0075 
z31 -0.0034 0.0023 0.0022 0.0032 
z32 0.0029 -0.0014 0.0011 0.0041 

 
The convergence characteristics of the energy function with respect to number of iterations is shown 
in Fig.5 

 

Figure 5: Convergence of energy function 
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