

CALCULATION OF POWER CONSUMPTION IN 7 TRANSISTOR SRAM CELL USING CADENCE TOOL

Shyam Akashe¹, Ankit Srivastava², Sanjay Sharma³

¹ Research Scholar, Deptt. of Electronics & Comm. Engg., Thapar Univ., Patiala, Punjab, India.

² Research Scholar, Deptt. of Electronics & Comm. Engg., RGPV Univ., Bhopal, M.P, India.

³Deptt. of Electronics & Comm. Engineering, Thapar University, Patiala, Punjab, India.

ABSTRACT

In this paper a new 7T SRAM is proposed. CMOS SRAM Cell is very less power consuming and have very less read and write time. In proposed SRAM an additional write bit line balancing circuitry is added in 6T SRAM for power reduction. A seven Transistor (7T) cell at 45 nm Technology is proposed to accomplish improvement in stability, power dissipation and performance compared with previous designs. Simulation result of proposed design using CADENCE TOOL shows the reduction in total average power consumption.

KEYWORDS:- Conventional SRAM, Low Power, Power Consumption.

I. INTRODUCTION

Advances in CMOS technology have made it possible to design chips for high integration density, fast performance, and low power consumption. To achieve these objectives, the feature size of CMOS devices has been dramatically scaled to very small features and dimensions [1]. Over the last few years, devices at 180nm have been manufactured; the deep sub-micron/nano range of 45nm is foreseen to be reached in the very near future.

Technology scaling results in a significant increase in leakage current of CMOS devices. As the integration density of transistors increases, leakage power has become a major concern in today's processors and SoC designs. Considerable attention has been paid to the design of low power and high-performance SRAMs as they are critical components in both handheld devices and high performance processors. Different design remedies can be undertaken; a decrease in supply voltage reduces quadratically the dynamic power consumption. However, with an aggressive scaling in technology as predicted by the Technology Roadmap, substantial problems have already been encountered when the conventional six transistors (6T) SRAM cell configuration is utilized at an ultra-low power supply; this cell shows poor stability at very small feature sizes[2]. A seven transistors (7T) SRAM cell configuration is proposed in this paper, which is amenable to small feature sizes encountered in the deep sub-micron/nano CMOS ranges. The schematic and Layout of proposed 7T SRAM Cell is shown in Figure 1.1 and figure 1.2 respectively.

The objective of this paper is to investigate the transistor sizing of the 7T SRAM cell for optimum power. An innovative precharging and bitline balancing scheme for writing operation of the 7T SRAM cell is also proposed for maximum standby power savings in an SRAM array[3]. CADENCE simulation results confirm that the proposed scheme achieves 45% of power savings compared to the conventional SRAM cell array based on the 6T configuration. The paper starts with introducing the proposed 7T cell and the design method used to find the optimal transistor sizing for the proposed SRAM cell[4]. Finally, the impact of process variation on the cell's stability and power consumption is analyzed to show that the 7T SRAM cell has a very good tolerance in the presence of process variations [5].

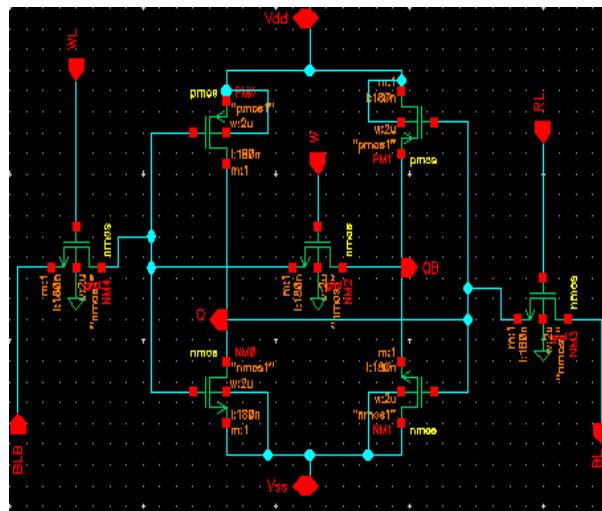


Figure 1.1 Schematic of Proposed 7T SRAM Cell

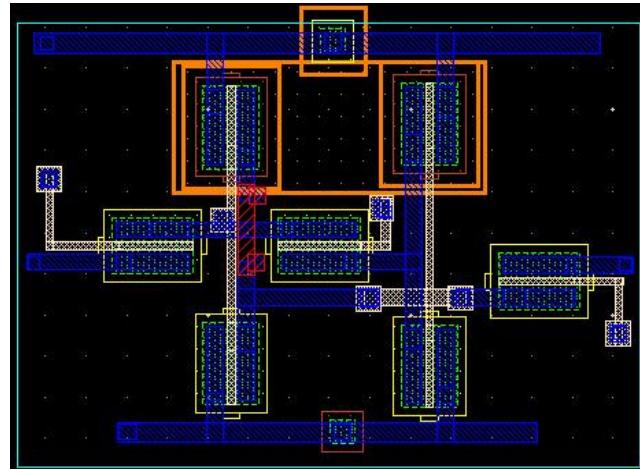


Figure 1.2 The physical layout view of the proposed 7T cell

II. LEAKAGE CURRENT OF 7T SRAM CELL

Gate length scaling increases device leakage exponentially across technology generations. Leakage current is the main source of standby power for a SRAM cell. In nano-scale CMOS devices, the major components of leakage current are the sub-threshold leakage, the gate direct tunneling leakage, and the reverse biased band-to- band tunneling junction leakage. The sub-threshold leakage, which is defined as a weak inversion conduction current of the CMOS transistor when $V_{gs} < V_{th}$, represents a significant leakage current component in the off-state.

The equation for the sub-threshold leakage current is given by (1)

$$I_{sub} = I_o e^{(V_{gs} - V_{th})/\eta kT/q} (1 - e^{(-V_{ds})/kT/q}) \quad - (1)$$

Where,

$$I_o = \mu_0 C_o x (W/L) (kT/q)^2 (1 - e^{I_s}) \quad - (2)$$

W and L are the transistor's channel width and length, μ_0 is the low field mobility, C_o is the gate oxide capacitance, k is Boltzmann's constant, and q is the electronic charge.

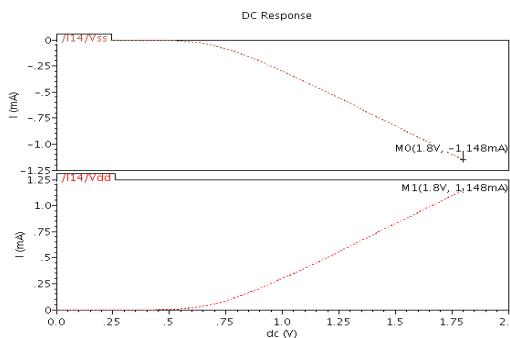


Figure 2 Leakage current of Proposed 7T SRAM

III. WRITE BITLINE BALANCING CIRCUITRY FOR POWER REDUCTION

The proposed write concept depends on cutting off the feedback connection between the two inverters, inv1 and inv2, before the write operation. The feedback connection and disconnection are performed through an extra NMOS transistor N5, as shown in Figure 1, and the cell only depends on BL_bar to perform a write operation [6]. The write operation starts by turning N5 off to cut off the feedback connection. BL_bar carries complement of the input data, N3 is turned on, and N4 is kept off. The SRAM cell looks like two cascaded inverters, inv2 followed by inv1. BL_bar transfers the complement of input data to Q2 which drives inv2, P2 and N2, to develop Q, cell data, which drives inv1 and develops Qbar. Both BL and BL_bar are precharged "high" before and after each read/write operation [9]. When writing "0", BL_bar is kept "high" with negligible write power consumption.

To write "1", BL_bar is discharged to "0" with comparable power consumption to a conventional write. The write circuit does not discharge one of the bit lines for every write operation and the activity factor of discharging BL_bar is less than "1".

The proposed write bitline balancing circuitry, output waveform and power consumption graph is shown in the Figure 3.1, Figure 3.2 and Figure 3.3 respectively.

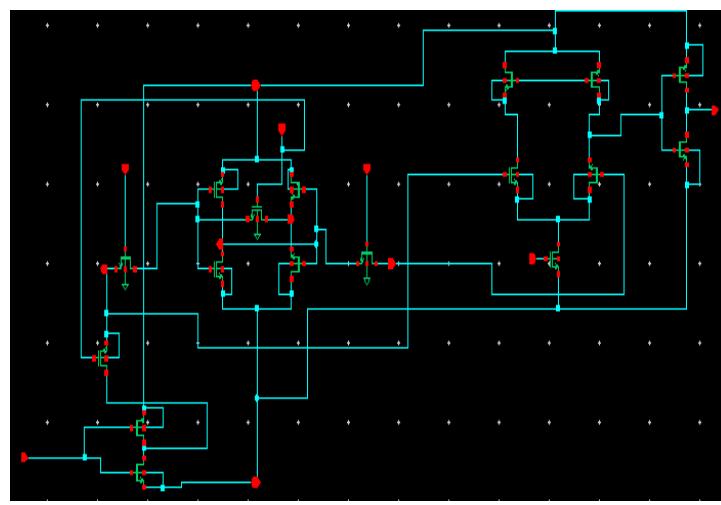


Figure 3.1 Proposed write bit line balancing circuitry

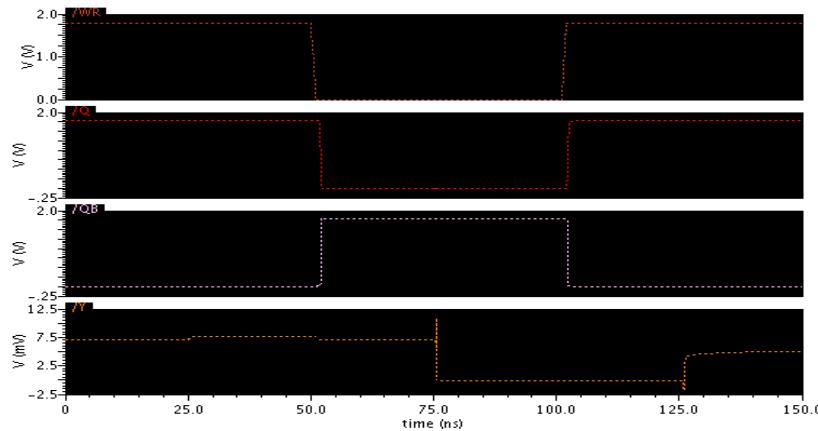


Figure 3.2 Output Waveform of 7T SRAM cell

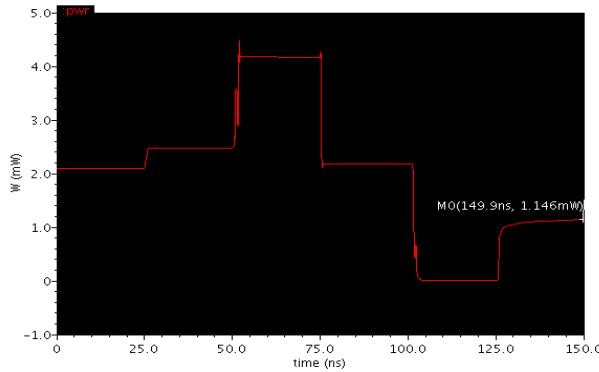


Figure 3.3 Power consumption of Proposed 7T SRAM.

IV. SIMULATION RESULTS

In this paper, a novel write methodology is proposed which depends on cutting off the feedback connection between the two back-to-back inverters in the SRAM cell and requires a 7T SRAM cell. The proposed technique reduces the number of times to charge and discharge the large bit lines capacitance to reduce the write power consumption. Simulation results show that the write circuitry scheme for the proposed 7T SRAM cell based array achieves a 45% reduction in power consumption at a 1.8V power supply voltage and typical process corner compared with a conventional 6T SRAM cell based array. The Figure 4.1 & Figure 4.2 also shows the waveform of leakage current and power consumption. The Results of leakage current and power consumption using Cadence Tool is given in TABLE I.

Table I: Simulation results of the 7T SRAM cell

Process Technology	45 nm
Power Supply Voltage	1.8 V
Precharge Voltage	1 V
Leakage Current	1.148 mA
Power Consumption	1.146 mW

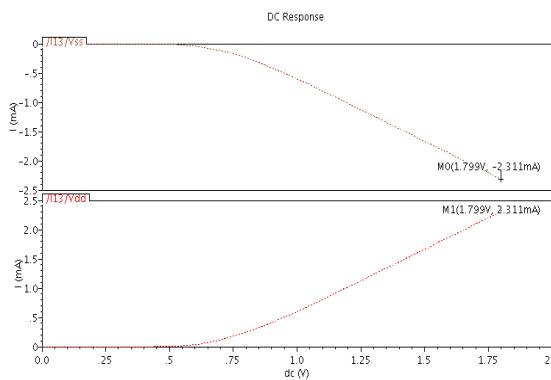


Figure 4.1 Leakage current of 6T SRAM

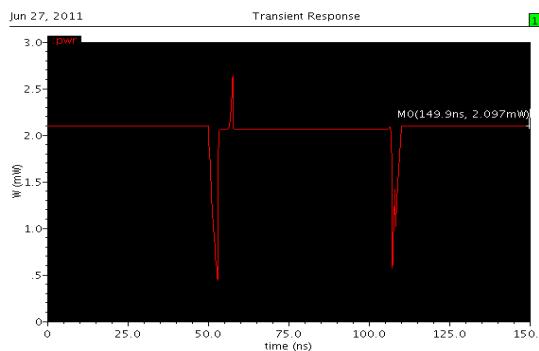


Figure 4.2 Power consumption of Proposed 7T SRAM

V. CONCLUSION

In this paper, a novel write methodology is proposed which depends on cutting off the feedback connection between the two back-to-back inverters in the SRAM cell and requires a 7T SRAM cell. The proposed technique reduces the number of times to charge and discharge the large bit lines capacitance to reduce the write power consumption. The simulation results using CADENCE TOOL show that much better tolerance to process variation is achieved using the proposed 7T SRAM cell.

ACKNOWLEDGEMENT

The author would like to thank Institute of Technology and Management, Gwalior for providing the Tools and Technology for the work to be completed.

REFERENCES

- [1] Kevin Z. *Embedded Memories for Nano-Scale VLSIs*. 2009: Springer Publishing Company, Incorporated. 400.
- [2] International Technology Roadmap for Semiconductor 2005. <http://www.itrs.net/Links/2005ITRS/Home2005.htm>.
- [3] Pavlov A. and Sachdev M. *CMOS SRAM Circuit Design and Parametric Test in Nano-scaled Technologies*. Springer, 2008.
- [4] Noda K., Matsui K., Takeda K., and Nakamura N. "A load less CMOS four-transistor SRAM cell in a 0.18-gm logic technology". *Electron Devices, IEEE Transactions on*, 48(12):2851–2855, Dec 2001.
- [5] Takeda K., Aimoto Y., Nakamura N., Toyoshima H., Iwasaki T., Noda K., Matsui K., Itoh S., Masuoka S., T. Horiuchi, et al. "A 16-Mb 400-MHz loadless CMOS four-transistor SRAM macro". *IEEE Journal of Solid-State Circuits*, 35(11):1631–1640, 2000.
- [6] Yang J. and Chen L. "A New Loadless 4-Transistor SRAM Cell with a 0.18 μ m CMOS Technology". In *Electrical and Computer Engineering, 2007. CCECE 2007. Canadian Conference on*, pages 538–541, 2007.

[7] E. Grossar, M. Stucchi, K. Maex, W. Dehaene, " Read Stability and Write-Ability Analysis of SRAM Cells for Nanometer Technologies", in *Solid-State Circuits, IEEE Journal of, Volume 41*, Issue 11, pp. 2577 - 2588, Nov.2006.

[8] G. Wann et al., "SRAM cell design for stability methodology", in *Proc. IEEE VLSI-TSA*, pp. 21 - 22, April 2005.

[9] K. Roy *et al.*, "Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits," *Proc. IEEE, vol. nb91*, no. 2, pp. 305–327, Feb. 2003.

[10] C.H.Kim and K.Roy, " Dynamic Vt SRAM: A leakage tolerant cache memory for low voltage Microprocessor " in *Proc. Int. Symp. Low Power Electronics and Design*, 2002, pp. 251–254.

ABOUT THE AUTHOR

Shyam Akashe was born in 22nd May 1976. He received his M.Tech from ITM, Gwalior in 2006. Currently, He is pursuing his Ph.D from Thapar University, Patiala on the topic of Low Power Memory Cell Design. His research interests are VLSI Design, Low Power, VLSI signal processing, FPGA Design and Communication System.

Ankit Srivastava was born in 15th February 1987. He received his B.Tech in Electronics & Instrumentation from Hindustan College of Science & Technology; Mathura in 2008. He is pursuing his M.Tech (VLSI Design) from Institute of Technology & Management, Gwalior. His research interests are VLSI Design, Low Power, and VLSI signal processing.

Sanjay Sharma was born in 2nd October 1971. He is currently working as Associate Professor in Electronics and Communication Engineering Department of Thapar University, Patiala, India. He has done his B.Tech in ECE from REC in 1993, Jalandhar, M.Tech in ECE from TTTI, Chandigarh in 2001 and Ph.D from PTU, Jalandhar in 2006. He has completed all his education with honours. He has published many papers in various journals and conferences of international repute. His main interests are VLSI Signal Processing, Wireless System Design using Reconfigurable Hardware.

