

NEW SYSTEM OF CHAOTIC SIGNAL GENERATION BASED ON COUPLING COEFFICIENTS APPLIED TO AN ADD/DROP SYSTEM

I. S. Amiri¹, A. Nikoukar², J. Ali¹

¹Institute of Advanced Photonics Science, Nanotechnology Research Alliance, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Malaysia

²Faculty of Computer Science & Information Systems (FCSIS), Universiti Teknologi Malaysia (UTM), 81300 Johor Bahru, Malaysia

ABSTRACT

The nonlinear behavior (chaotic) of light traveling in an optical fiber ring resonator such as an add/drop system is presented. The chaotic behavior is considered to be a beneficial effect that can be used in the communication system. Such a system can be used to secure the information signals, therefore, the ability of chaotic carriers to synchronize in a communication system is performed. The used optical material is InGaAsP/InP regarding to suitable parameters of the system. The nonlinear refractive index is fixed to $n_2 = 3.8 \times 10^{-20} \text{ m}^2/\text{W}$, and the 20,000 iterations of round-trip within the system is simulated. The input powers are selected at 1 W, where the coupling coefficient of the system varies according to two critical cases, where $0 < \kappa < 0.1$ and $0.1 < \kappa < 1$. As a result, larger coupler coefficient corresponds to lower input power for the case of $0 < \kappa < 0.1$ and smaller coupling coefficient of the system corresponds to lower input power when $0.1 < \kappa < 1$. To optimize the microring systems, Lower input power is recommended in many applications in optical optical communication systems

KEYWORDS: Chaotic communication; chaotic control; Nonlinear optical.

I. INTRODUCTION

Nonlinear behaviors of light traveling in a fiber optic ring resonator are commonly induced by the effects such as Kerr effects [1-4], four-wave mixing, and the external nonlinear pumping power [5]. Such nonlinear behaviors are named as chaos, bistability, and bifurcation [6]. More details of such behaviors in a microring resonator are clearly described by Amiri *et al* [7]. However, apart from the penalties of the nonlinear behaviors of light traveling in the fiber ring resonator [8-9], there are some benefits that can be used in the communication system [10]. One of them known as chaotic behavior that has been used to make the benefit of communication system in either electronic or optical communications [11-13]. Fortunately, most of the previous investigations are shown in mathematical ways, where the practical applications could be implemented [14-16]. For instance, the chaotic control input power [17-20] into the system is equal to the standard communication light source used in the system, and the implemented fiber optic devices are in the fabrication scales [21-23]. This means the ability of chaotic carriers to synchronize in a communication system is valid [24-26]. Recently, Amiri *et al.* have reported the successful characterization of the microring resonator with a radius of micron meters [27-28] using the optical materials called InGaAsP/InP [29-31], which are suitable for use in the practical devices and systems [32-33].

Amiri *et al* have also shown that an add/drop device could be constructed using a microring resonator, where the device characteristics have shown that they are suitable to implement in the practical

communication system [34-35]. In practical applications, the microring resonator and add/drop device parameters are required to make them within the ranges of the usual fabrication parameters [36-39].

Sumetsky *et al* showed that a high quality factor of the microfiber loop resonator (MLR) can be obtained by using suitable coupling coefficient of the system. Here, the high coupling efficiency of an MLR is achieved through an adiabatically slow variation of the microfiber diameter in the coupling region [40]. Yunchu *et al* demonstrated that the coupling coefficient between the two ring resonators plays a critical role in optimizing the performance of the coupled-ring modulator. One can consider the coupled-ring structure as a single compound resonator, where the coupling coefficient can be varied to adjust the energy distribution between the inner and outer rings [41].

This paper presents the design of the system of the chaotic signal generation that uses the practical device parameters. Such a system can be used to secure the information signals [42-43], where the tapping of the signals from the optical communication link is extremely difficult [44-46]. The analogy of the chaotic signal generation using fiber ring resonator and the related behaviors is described. The sections of the research work are organized by the comprehensive literature of the soliton pulse propagating within a microring system using critical parameter of the system (Section I); theory of the research which is based on the solving the nonlinear equations of the pulse propagating within a nonlinear fiber optics (Section II); method of the simulation results which is implemented using an iterative method (Section III); results which show that the device parameters used have good potentials for practical applications (Section IV); future works and further research studies, which can be done based on the micro and nanoring resonators (Section V), and conclusion section which provides a thoughtful end to a piece of writing and will lead the reader to the main motive of the whole research paper (Section VI).

II. THEORY AND SYSTEM

An add/drop microring resonator configuration is shown in figure 1. It is constructed by a single ring resonator which is coupled to two optical couplers on the top and bottom sides, where the circumference of the fiber ring is L [47-50]. The input signals at the input and add ports are given by E_i and E_{add} respectively. We assume the composite electric fields at each port as shown in figure 1 and are given by E_t and E_d . The rest of the fields E_r is the circulated fields inside the fiber ring resonator.

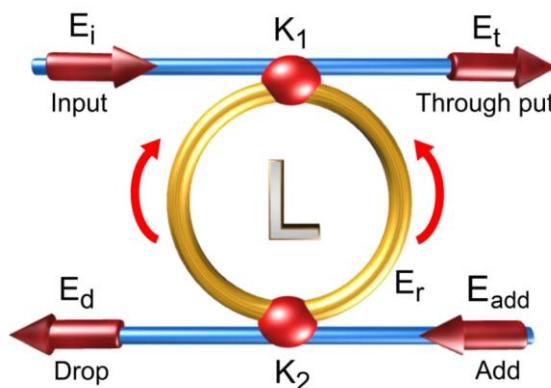


Fig. 1: A diagram of a fiber optic ring resonator

Here, the input light is monochromatic diode laser with constant amplitude and random phase modulation, thus producing a temporal coherence degradation [51-56]. The input light fields which are Gaussian beams can be expressed as [57-61]

$$E_{in}(t) = E_0 \exp \left[\left(\frac{x}{2L_D} \right) - i\omega_0 t \right] \quad (1)$$

E_0 and x are the amplitude of optical field and propagation distance respectively [62-65]. L_D is the dispersion length of the soliton pulse [66-69] where, frequency shift of the signal is ω_0 [70-72]. When

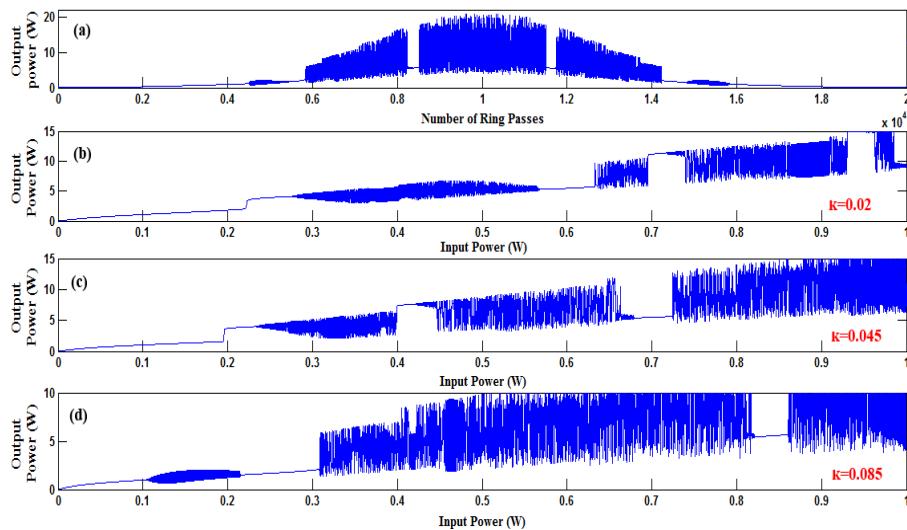
a soliton pulse is input and propagated within a microring resonator, the resonant output is formed, thus, two complementary optical circuits of the add/drop system can be given by [73-75]

$$\left| \frac{E_t}{E_{in}} \right|^2 = \frac{(1-\kappa_1) - 2\sqrt{1-\kappa_1} \cdot \sqrt{1-\kappa_2} e^{-\frac{\alpha L}{2}} \cos(k_n L) + (1-\kappa_2) e^{-\alpha L}}{1 + (1-\kappa_1)(1-\kappa_2) e^{-\alpha L} - 2\sqrt{1-\kappa_1} \cdot \sqrt{1-\kappa_2} e^{-\frac{\alpha L}{2}} \cos(k_n L)} \quad (2)$$

and

$$\left| \frac{E_d}{E_{in}} \right|^2 = \frac{\kappa_1 \kappa_2 e^{-\frac{\alpha L}{2}}}{1 + (1-\kappa_1)(1-\kappa_2) e^{-\alpha L} - 2\sqrt{1-\kappa_1} \cdot \sqrt{1-\kappa_2} e^{-\frac{\alpha L}{2}} \cos(k_n L)} \quad (3)$$

κ is the coupling coefficient [76], and $x=\exp(-\alpha L/2)$ represents a round-trip loss coefficient [77], $\Phi_0=kLn_0$ [78] and $\Phi_{NL}=kLn_2|E_{in}|^2$ are the linear and nonlinear phase shifts [79-80] and $k=2\pi/\lambda$ is the wave propagation number in a vacuum [81]. L and α are a waveguide length and linear absorption coefficient, respectively [82-84]. The parameters of the system were fixed to be $\lambda_0=1.55\mu\text{m}$, $n_0=3.34$ [85-87], A_{eff} is the effective mode core area of the fiber [88-90], where $A_{eff}=30\mu\text{m}^2$, the fiber losses $\alpha=0.02\text{dB/km}$ [91-92]. The fractional coupler intensity loss is $\gamma=0.01$ [93-94], and $R=12.5\mu\text{m}$. The coupling coefficient varies regarding to the input power. The nonlinear refractive indices ranged from $n_2=3.8\times10^{-20}\text{m}^2/\text{W}$, and the 20,000 iterations of round-trips inside the optical fiber is simulated.


III. METHOD OF SIMULATION

To simulate the results based on the optical soliton propagating within microring resonator, MATLAB software is used. Here, an iterative method is used for calculating the output power of each round-trip of the input pulse within the ring system. Programming codes were written in regard to the ring resonator parameters, namely, the coupling coefficient, ring radius, central wavelength, linear and nonlinear refractive indices, linear and nonlinear phase, round-trips, internal loss, and so forth. Actual data from practical experiments were implemented for simulation programming codes for different input pulses propagating inside the nonlinear Kerr type fiber ring resonators.

IV. RESULTS AND DISCUSSION

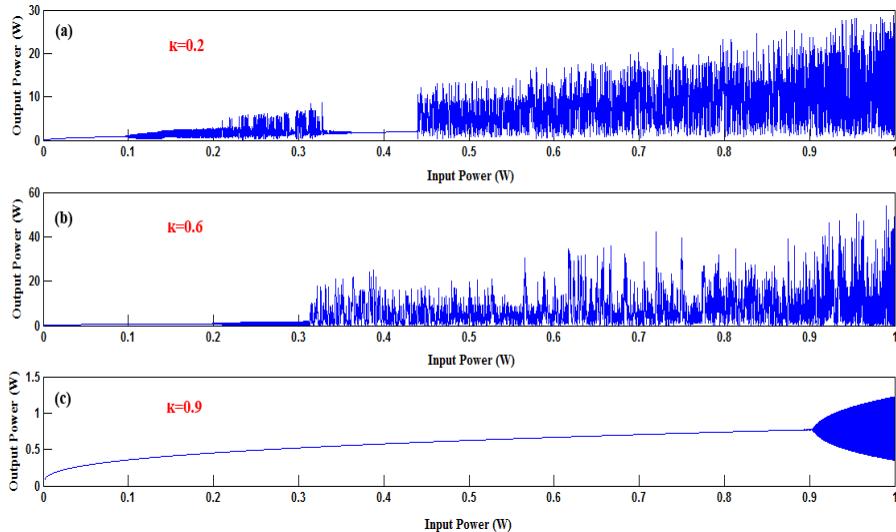

The input power is maximized at 1 W, where the output power is varied directly with the coupling coefficient. Thus, the chaotic signal can be generated and controlled by varying the coupling coefficients, where the required output power is obtained. In real experimental works, the input power of the laser diode is needed to be lower due to the available commercial laser diodes. There are two cases which should be taken into account as follows: First where the coupling coefficient ranges as $0 < \kappa < 0.1$ and second where it ranges as $0.1 < \kappa < 1$.

Figure 2 shows the output chaotic signals generated for a variety of coupling coefficients, where the coupling coefficients vary from $\kappa=0.02$ to $\kappa=0.085$. The figure 2 (a) shows the output signal in terms of round-trip, where the figure 2(b-e) show the output signals reverence to different coupling coefficients. Therefore, larger coupler coefficient corresponds to lower input power which is required in many applications in optical switching and optical communication systems.

Fig. 2: Generation of chaotic signals when $0 < \kappa < 0.1$, (a): output signal versus number of round-trips, (b): Output chaotic signal where $\kappa = 0.02$, (c): Output chaotic signal where $\kappa = 0.045$, (d): Output chaotic signal where $\kappa = 0.085$

For the second case, where the coupling coefficient is $0.1 < \kappa < 1$, the larger coupling coefficient corresponds to higher input power as shown in figure 3.

Fig. 3: Generation of chaotic signals where $0.1 < \kappa < 1$, (a): Output chaotic signal where $\kappa = 0.2$, (b): Output chaotic signal where $\kappa = 0.6$, (c): Output chaotic signal where $\kappa = 0.9$

Therefore smaller coupling coefficient of the system is recommended in order to optimize the microring system and the output signal which is in the form of chaotic signals.

V. FUTURE WORK

The quantum key system based on the entangled photon can be applied by using system of chaotic generation. A microring resonator system can be used to switch signals in the form of chaotic which can be applied to improve the quantum key systems working on the same principle. The technique of quantum entanglement photon switching is called a quantum repeater which uses entangled states stored in quantum memories. Quantum communication involves encoding information in quantum states, or quubits, as opposed to classical communication's use of bits. Quantum key distribution exploits certain properties of these quantum states to ensure its security. Another technique is cryptography based on synchronized chaos. There, the encrypted signal is simply added to some

chaotic noise. The security lies in the fact that the noise has a larger amplitude than the signal for the entire spectrum.

VI. CONCLUSION

We have proposed the new design of the optical microring resonator system that uses critical parameters such as coupling coefficient to generate and control the output signals in the form of chaotic signals. Here, the common nonlinear penalties in fiber optic microring resonator are presented. By using the chaotic signal generation system, the information or data, in an optical communication and transmission link can be secured and used for a public network. Thus an add/drop system can be used to generate chaotic signal and operate as an optical switching system in which then requires output signals can be obtained and used in optical communication systems. The simulation results show that specific parameters such as the input power and coupling coefficients are used to control the output signals. To optimize the microring system, lower input power is recommended which can be obtained by using a larger coupling coefficient where it is less than 1 and by using smaller coupling coefficients where $0.1 < \kappa < 1$.

ACKNOWLEDGEMENT

I. S. Amiri would like to thank the Institute of Advanced Photonics Science, Nanotechnology Research Alliance, Universiti Teknologi Malaysia (UTM).

REFERENCES

- [1] I. S. Amiri, A. Afrozeh, M. Bahadoran, J. Ali & P. P. Yupapin, (2012) "Molecular Transporter System for Qubits Generation", *Jurnal Teknologi (Sciences and Engineering)*, 55, 155-165.
- [2] A. Afrozeh, M. Bahadoran, I. S. Amiri, A. R. Samavati, J. Ali & P. P. Yupapin, (2012) "Fast Light Generation Using GaAlAs/GaAs Waveguide", *Jurnal Teknologi (Sciences and Engineering)*, 57, 17-23.
- [3] J. Ali, I. S. Amiri, M. A. Jalil, M. Hamdi, F. K. Mohamad, N. J. Ridha & P. P. Yupapin, (2010) "Trapping spatial and temporal soliton system for entangled photon encoding", presented at the *Nanotech Malaysia, International Conference on Enabling Science & Technology*, Kuala Lumpur, Malaysia.
- [4] I. S. Amiri, A. Shahidinejad, A. Nikoukar, J. Ali & P. P. Yupapin, (2012) "A Study of Dynamic Optical Tweezers Generation For Communication Networks", *International Journal of Advances in Engineering & Technology (IJAET)*, 4(2), 38-45.
- [5] I. S. Amiri, M. Ranjbar, A. Nikoukar, A. Shahidinejad, J. Ali & P. P. Yupapin, (2012), "Multi optical Soliton generated by PANDA ring resonator for secure network communication", in *Computer and Communication Engineering (ICCCE) Conference*, Malaysia, 760-764.
- [6] J. Ali, M. Kouhnnavard, I. S. Amiri, M. A. Jalil, A. Afrozeh & P. P. Yupapin (2010) "Security confirmation using temporal dark and bright soliton via nonlinear system", presented at the *ICAMN, International Conference*, Prince Hotel, Kuala Lumpur, Malaysia.
- [7] I. S. Amiri, R. Ahsan, A. Shahidinejad, J. Ali & P. P. Yupapin, (2012) "Characterisation of bifurcation and chaos in silicon microring resonator", *IET Communications*, 6(16), 2671-2675.
- [8] J. Ali, K. Kulsirirat, W. Techithdeera, M. A. Jalil, I. S. Amiri, I. Naim & P. P. Yupapin, (2010) "Temporal dark soliton behavior within multi-ring resonators", presented at the *Nanotech Malaysia, International Conference on Enabling Science & Technology*, Malaysia.
- [9] I. S. Amiri, A. Nikoukar, A. Shahidinejad, J. Ali & P. P. Yupapin, (2012), "Generation of discrete frequency and wavelength for secured computer networks system using integrated ring resonators", in *Computer and Communication Engineering (ICCCE) Conference*, Malaysia, 775-778.
- [10] I. S. Amiri, J. Ali & P. P. Yupapin, (2013) "Security Enhancement of the Optical Signal Communication using Binary Codes Generated by Optical Tweezers", *Chinese Journal of Physics*.
- [11] J. Ali, A. Afrozeh, I. S. Amiri, M. A. Jalil, M. Kouhnnavard & P. P. Yupapin, (2010) "Generation of continuous optical spectrum by soliton into a nano-waveguide", presented at the *ICAMN, International Conference*, Prince Hotel, Kuala Lumpur, Malaysia.
- [12] J. Ali, M. A. Jalil, I. S. Amiri & P. P. Yupapin, (2010) "MRR quantum dense coding", presented at the *Nanotech Malaysia, International Conference on Enabling Science & Technology*, KLCC, Kuala Lumpur, Malaysia.

[13] J. Ali, A. Afrozeh, M. Hamdi, I. S. Amiri, M. A. Jalil, M. Kouhnavard & P. Yupapin, (2010) "Optical bistability behaviour in a double-coupler ring resonator", presented at the *ICAMN, International Conference*, Prince Hotel, Kuala Lumpur, Malaysia.

[14] J. Ali, K. Raman, A. Afrozeh, I. S. Amiri, M. A. Jalil, I. N. Nawi & P. P. Yupapin, (2010) "Generation of DSA for security application", presented at the *2nd International Science, Social Science, Engineering Energy Conference (I-SEEC 2010)*, Nakhonphanom, Thailand.

[15] P. P. Yupapin, M. A. Jalil, I. S. Amiri, I. Naim & J. Ali, (2010) "New Communication Bands Generated by Using a Soliton Pulse within a Resonator System", *Circuits and Systems*, 1(2), 71-75.

[16] M. Kouhnavard, I. S. Amiri, M. Jalil, A. Afrozeh, J. Ali & P. P. Yupapin, (2010), "QKD via a quantum wavelength router using spatial soliton", in *Enabling Science and Nanotechnology (ESciNano) Conference*, Malaysia, 210-216.

[17] J. Ali, S. Saktioto, M. Hamdi & I. S. Amiri, (2010) "Dynamic silicon dioxide fiber coupling polarized by voltage breakdown", presented at the *Nanotech Malaysia, International Conference on Enabling Science & Technology*, KLCC, Kuala Lumpur, Malaysia.

[18] M. A. Jalil, I. S. Amiri, M. Kouhnavard, A. Afrozeh, J. Ali & P. P. Yupapin, (2010), "Finesse Improvements of Light Pulses within MRR System", in *Faculty of Science Postgraduate Conference (FSPGC)*, Universiti Teknologi Malaysia.

[19] N. J. Ridha, F. K. Mohamad, I. S. Amiri, Saktioto, J. Ali & P. P. Yupapin, (2010) "Controlling Center Wavelength and Free Spectrum Range by MRR Radii ", presented at the *International Conference on Experimental Mechanics (ICEM)*, Kuala Lumpur, Malaysia.

[20] A. A. Shojaei & I. S. Amiri, (2011) "DSA for Secured Optical Communication", presented at the *International Conference for Nanomaterials Synthesis and Characterization (INSC)*, Kuala Lumpur, Malaysia.

[21] M. Imran, R. A. Rahman & I. S. Amiri, (2010), "Fabrication of Diffractive Optical Element using Direct Writing CO₂ Laser Irradiation", in *Faculty of Science Postgraduate Conference (FSPGC)*, Universiti Teknologi Malaysia.

[22] S. Saktioto, S. Daud, M. A. Jalil, I. S. Amiri & P. P. Yupapin, (2010) "FBG sensing system for outdoor temperature measurement", presented at the *ICEM*, Legend Hotel, Kuala Lumpur, Malaysia.

[23] A. Shahidinejad, A. Nikoukar, I. S. Amiri, M. Ranjbar, A. Shojaei, J. Ali & P. Yupapin, (2012), "Network system engineering by controlling the chaotic signals using silicon micro ring resonator", in *Computer and Communication Engineering (ICCCE) Conference*, Malaysia, 765-769.

[24] J. Ali, I. S. Amiri, M. A. Jalil, A. Afrozeh, M. Kouhnavard & P. Yupapin, (2010) "Novel system of fast and slow light generation using micro and nano ring resonators", presented at the *ICAMN, International Conference*, Prince Hotel, Kuala Lumpur, Malaysia.

[25] I. S. Amiri, G. Vahedi, A. Shojaei, A. Nikoukar, J. Ali & P. P. Yupapin, (2012) "Secured Transportation of Quantum Codes Using Integrated PANDA-Add/drop and TDMA Systems", *International Journal of Engineering Research & Technology (IJERT)*, 1(5).

[26] M. Kouhnavard, A. Afrozeh, I. S. Amiri, M. A. Jalil, J. Ali & P. P. Yupapin, (2010) "New system of Chaotic Signal Generation Using MRR", presented at the *International Conference on Experimental Mechanics (ICEM)*, Kuala Lumpur, Malaysia.

[27] I. S. Amiri, A. Afrozeh & M. Bahadoran, (2011) "Simulation and Analysis of Multisoliton Generation Using a PANDA Ring Resonator System", *Chinese Physics Letters*, 28, 104205.

[28] I. S. Amiri, A. Nikoukar, A. Shahidinejad, M. Ranjbar, J. Ali & P. P. Yupapin, (2012) "Generation of Quantum Photon Information Using Extremely Narrow Optical Tweezers for Computer Network Communication", *GSTF Journal on Computing (joc)*, 2(1).

[29] A. Afrozeh, I. S. Amiri, M. Kouhnavard, M. Bahadoran, M. A. Jalil, J. Ali & P. P. Yupapin, (2010) "Dark and Bright Soliton trapping using NMRR", presented at the *International Conference on Experimental Mechanics (ICEM)*, Kuala Lumpur, Malaysia.

[30] J. Ali, A. Mohamad, I. Nawi, I. S. Amiri, M. Jalil, A. Afrozeh & P. Yupapin, (2010) "Stopping a dark soliton pulse within an NNRR", presented at the *AMN-APLOC International Conference*, Wuhan, China.

[31] S. Saktioto, S. Daud, J. Ali, M. A. Jalil, I. S. Amiri & P. P. Yupapin, (2010) "FBG simulation and experimental temperature measurement", presented at the *ICEM*, Legend Hotel, Kuala Lumpur, Malaysia.

[32] I. S. Amiri, M. H. Khanmirzaei, M. Kouhnavard & S. Mitatha, (2010) "Quantum cryptography via a wavelength router for internet security", *Piers Proceeding, Cambridge*.

[33] I. S. Amiri, M. Nikmaram, A. Shahidinejad & J. Ali, (2012) "Cryptography Scheme of an Optical Switching System Using Pico/Femto Second Soliton Pulse", *International Journal of Advances in Engineering & Technology (IJAET)*, 5(1), 176-184.

[34] I. S. Amiri, J. Ali & P. P. Yupapin, (2012) "Enhancement of FSR and Finesse Using Add/Drop Filter and PANDA Ring Resonator Systems", *International Journal of Modern Physics B*, 26(04).

[35] I. S. Amiri, S. Babakhani, G. Vahedi, J. Ali & P. Yupapin, (2012) "Dark-Bright Solitons Conversion System for Secured and Long Distance Optical Communication", *IOSR Journal of Applied Physics (IOSR-JAP)*, 2(1), 43-48.

[36] A. Afrozeh, I. S. Amiri, M. Kouhnavard, M. Bahadoran, M. A. Jalil, J. Ali & P. P. Yupapin, (2010) "Optical Memory Time using Multi Bright Soliton", presented at the *International Conference on Experimental Mechanics (ICEM)*, Kuala Lumpur, Malaysia.

[37] J. Ali, I. S. Amiri, M. Jalil, M. Kouhnavard, A. Afrozeh, I. Naim & P. Yupapin, (2010) "Narrow UV pulse generation using MRR and NRR system", presented at the *ICAMN, International Conference*, Prince Hotel, Kuala Lumpur, Malaysia.

[38] J. Ali, M. Kouhnavard, A. Afrozeh, I. S. Amiri, M. A. Jalil & P. P. Yupapin, (2010) "Optical bistability in a FORR", presented at the *ICEM*, Legend Hotel, Kuala Lumpur, Malaysia.

[39] A. A. Shojaei & I. S. Amiri, (2011) "Soliton for Radio wave generation", presented at the *International Conference for Nanomaterials Synthesis and Characterization (INSC)*, Kuala Lumpur, Malaysia.

[40] M. Sumetsky, Y. Dulashko, J. Fini, A. Hale & D. DiGiovanni, (2006) "The microfiber loop resonator: Theory, experiment, and application", *Journal of Lightwave Technology*, 24(1), 242-250.

[41] Y. Li, L. Zhang, M. Song, B. Zhang, J.-Y. Yang, R. G. Beausoleil, A. E. Willner & P. D. Dapkus, (2008) "Coupled-ring-resonator-based silicon modulator for enhanced performance", *Optics Express*, 16(17), 13342-13348.

[42] I. S. Amiri, A. Afrozeh, J. Ali & P. P. Yupapin, (2012) "Generation Of Quantum Codes Using Up And Down Link Optical Solition", *Jurnal Teknologi (Sciences and Engineering)*, 55, 97-106.

[43] J. Ali, M. Kouhnavard, M. A. Jalil & I. S. Amiri, (2010) "Quantum signal processing via an optical potential well", presented at the *Nanotech Malaysia, International Conference on Enabling Science & Technology*, Kuala Lumpur, Malaysia.

[44] I. S. Amiri, M. A. Jalil, A. Afrozeh, M. Kouhnavard , J. Ali & P. P. Yupapin, (2010), "Controlling Center Wavelength and Free Spectrum Range by MRR Radii", in *Faculty of Science Postgraduate Conference (FSPGC)*, Universiti Teknologi Malaysia.

[45] J. Ali, A. Afrozeh, I. S. Amiri, M. A. Jalil & P. P. Yupapin, (2010) "Dark and Bright Soliton trapping using NMRR", presented at the *ICEM*, Legend Hotel, Kuala Lumpur, Malaysia.

[46] I. S. Amiri, A. Nikoukar, G. Vahedi, A. Shojaei, J. Ali & P. Yupapin, (2012) "Frequency-Wavelength Trapping by Integrated Ring Resonators For Secured Network and Communication Systems", *International Journal of Engineering Research & Technology (IJERT)*, 1(5).

[47] J. Ali, M. A. Jalil, I. S. Amiri & P. P. Yupapin, (2010) "Dark-bright solitons conversion system via an add/drop filter for signal security application", presented at the *ICEM*, Legend Hotel, Kuala Lumpur, Malaysia.

[48] I. S. Amiri, A. Shahidinejad, A. Nikoukar, M. Ranjbar, J. Ali & P. P. Yupapin, (2012) "Digital Binary Codes Transmission via TDMA Networks Communication System Using Dark and Bright Optical Soliton", *GSTF Journal on Computing (joc)*, 2(1).

[49] J. Ali, M. Roslan, M. Jalil, I. S. Amiri, A. Afrozeh, I. Nawi & P. Yupapin, (2010) "DWDM enhancement in micro and nano waveguide", presented at the *AMN-APLOC International Conference*, Wuhan, China.

[50] I. S. Amiri, K. Raman, A. Afrozeh, M. A. Jalil, I. N. Nawi, J. Ali & P. P. Yupapin, (2011) "Generation of DSA for security application", *Procedia Engineering*, 8, 360-365.

[51] A. Afrozeh, I. S. Amiri, M. A. Jalil, M. Kouhnavard, J. Ali & P. P. Yupapin, (2011) "Multi Soliton Generation for Enhance Optical Communication", *Applied Mechanics and Materials*, 83, 136-140.

[52] J. Ali, I. S. Amiri, A. Afrozeh, M. Kouhnavard, M. Jalil & P. Yupapin, (2010) "Simultaneous dark and bright soliton trapping using nonlinear MRR and NRR", presented at the *ICAMN, International Conference*, Malaysia.

[53] J. Ali, I. S. Amiri, M. A. Jalil, F. K. Mohamad & P. P. Yupapin, (2010) "Optical dark and bright soliton generation and amplification", presented at the *Nanotech Malaysia, International Conference on Enabling Science & Technology*, KLCC, Kuala Lumpur, Malaysia.

[54] I. S. Amiri, M. H. Khanmirzaei, M. Kouhnavard, P. P. Yupapin & J. Ali, Quantum Entanglement using Multi Dark Soliton Correlation for Multivariable Quantum Router, in *Quantum Entanglement*, A. M. Moran, Ed., New York: Nova Science Publisher, 2012.

[55] A. Nikoukar, I. S. Amiri & J. Ali, (2010-2011) "Secured Binary Codes Generation for Computer Network Communication", presented at the *Network Technologies & Communications (NTC) Conference*, Singapore.

[56] C. Tanaram, C. Teeka, R. Jomtarak, P. P. Yupapin, M. A. Jalil, I. S. Amiri & J. Ali, (2011) "ASK-to-PSK generation based on nonlinear microring resonators coupled to one MZI arm", *Procedia Engineering*, 8, 432-435.

[57] A. Afrozeh, I. S. Amiri, A. Samavati, J. Ali & P. Yupapin, (2012), "THz frequency generation using MRRs for THz imaging", in *Enabling Science and Nanotechnology (ESciNano) Conference*, Malaysia, 1-2.

[58] J. Ali, I. S. Amiri, A. Jalil, A. Kouhnavard, B. Mitatha & P. Yupapin, (2010) "Quantum internet via a quantum processor", presented at the *International Conference on Photonics (ICP 2010)*, Langkawi, Malaysia.

[59] I. S. Amiri, A. Afrozeh, I. N. Nawi, M. A. Jalil, A. Mohamad, J. Ali & P. P. Yupapin, (2011) "Dark Soliton Array for communication security", *Procedia Engineering*, 8, 417-422.

[60] N. J. Ridha, F. K. Mohamad, I. S. Amiri, Saktioto, J. Ali & P. P. Yupapin, (2010) "Soliton Signals and The Effect of Coupling Coefficient in MRR Systems", presented at the *International Conference on Experimental Mechanics (ICEM)*, Kuala Lumpur, Malaysia.

[61] N. Suwanpayak, S. Songmuang, M. A. Jalil, I. S. Amiri, I. Naim, J. Ali & P. P. Yupapin, (2010), "Tunable and storage potential wells using microring resonator system for bio-cell trapping and delivery", in *International Conference on Enabling Science and Nanotechnology, ESciNano*, Kuala Lumpur, Malaysia, 289-291.

[62] J. Ali, I. S. Amiri, M. A. Jalil, A. Afrozeh, M. Kouhnavard & P. P. Yupapin, (2010) "Multi-soliton generation and storage for nano optical network using nano ring resonators", presented at the *ICAMN, International Conference*, Prince Hotel, Kuala Lumpur, Malaysia.

[63] J. Ali, M. A. Jalil, I. S. Amiri & P. P. Yupapin, (2010) "Effects of MRR parameter on the bifurcation behavior", presented at the *Nanotech Malaysia, International Conference on Enabling Science & Technology*, Kuala Lumpur, Malaysia.

[64] I. S. Amiri, M. A. Jalil, F. K. Mohamad, N. J. Ridha, J. Ali & P. P. Yupapin, (2010) "Storage of Optical Soliton Wavelengths Using NMRR", presented at the *International Conference on Experimental Mechanics (ICEM)*, Kuala Lumpur, Malaysia.

[65] M. Bahadoran, I. S. Amiri, A. Afrozeh, J. Ali & P. P. Yupapin, (2011) "Analytical Vernier Effect for Silicon Panda Ring Resonator", presented at the *National Science Postgraduate Conference, NSPC*, Universiti Teknologi Malaysia.

[66] A. Afrozeh, M. Kouhnavard, I. S. Amiri, M. A. Jalil, J. Ali & P. P. Yupapin, (2010), "Effect of Center Wavelength on MRR Performance", in *Faculty of Science Postgraduate Conference (FSPGC)*, Universiti Teknologi Malaysia.

[67] J. Ali, K. Raman, M. Kouhnavard, I. S. Amiri, M. A. Jalil, A. Afrozeh & P. P. Yupapin, (2011) "Dark soliton array for communication security", presented at the *AMN-APLOC International Conference*, Wuhan, China.

[68] M. Kouhnavard, A. Afrozeh, M. A. Jalil, I. S. Amiri, J. Ali & P. P. Yupapin, (2010), "Soliton Signals and the Effect of Coupling Coefficient in MRR Systems", in *Faculty of Science Postgraduate Conference (FSPGC)*, Universiti Teknologi Malaysia.

[69] C. Teeka, S. Songmuang, R. Jomtarak, P. P. Yupapin, M. A. Jalil, I. S. Amiri & J. Ali, (2011), "ASK to PSK Generation based on Nonlinear Microring Resonators Coupled to One MZI Arm", in *International Conference on Enabling Science and Nanotechnology, ESciNano*, Kuala Lumpur, Malaysia, 221-223.

[70] J. Ali, I. S. Amiri, M. A. Jalil, M. Hamdi, F. K. Mohamad, N. J. Ridha & P. P. Yupapin, (2010) "Proposed molecule transporter system for qubits generation", presented at the *Nanotech Malaysia, International Conference on Enabling Science & Technology*, Malaysia.

[71] J. Ali, M. Jalil, I. S. Amiri, A. Afrozeh, M. Kouhnavard, I. Naim & P. P. Yupapin, (2010) "Multi-wavelength narrow pulse generation using MRR", presented at the *ICAMN, International Conference*, Prince Hotel, Kuala Lumpur, Malaysia.

[72] I. S. Amiri, M. A. Jalil, F. K. Mohamad, N. J. Ridha, J. Ali & P. P. Yupapin, (2010) "Storage of Atom/Molecules/Photon using Optical Potential Wells", presented at the *International Conference on Experimental Mechanics (ICEM)*, Kuala Lumpur, Malaysia.

[73] J. Ali, M. Kouhnavard, I. S. Amiri, A. Afrozeh, M. A. Jalil, I. Naim & P. P. Yupapin, (2010) "Localization of soliton pulse using nano-waveguide", presented at the *ICAMN, International Conference*, Prince Hotel, Kuala Lumpur, Malaysia.

[74] I. S. Amiri, A. Afrozeh, M. Bahadoran, J. Ali & P. P. Yupapin, (2011) "Up and Down Link of Soliton for Network Communication", presented at the *National Science Postgraduate Conference, NSPC*, Malaysia.

[75] D. Gifany, I. S. Amiri, M. Ranjbar & J. Ali, (2013) "LOGIC CODES GENERATION AND TRANSMISSION USING AN ENCODING-DECODING SYSTEM", *International Journal of Advances in Engineering & Technology (IJAET)*, 5(2), 37-45.

[76] I. S. Amiri, A. Nikoukar, J. Ali & P. P. Yupapin, (2012) "Ultra-Short of Pico and Femtosecond Soliton Laser Pulse Using Microring Resonator for Cancer Cells Treatment", *Quantum Matter*, 1(2), 159-165.

[77] J. Ali, M. A. Jalil, I. S. Amiri & P. P. Yupapin, (2010) "Fast and slow lights via an add/drop device", presented at the *ICEM*, Legend Hotel, Kuala Lumpur, Malaysia.

[78] J. Ali, A. Afrozeh, I. S. Amiri, M. Hamdi, M. Jalil, M. Kouhnnavard & P. Yupapin, (2010) "Entangled photon generation and recovery via MRR", presented at the *ICAMN, International Conference*, Prince Hotel, Kuala Lumpur, Malaysia.

[79] A. Afrozeh, I. S. Amiri, M. Kouhnnavard, M. Jalil, J. Ali & P. Yupapin, (2010), "Optical dark and bright soliton generation and amplification", in *International Conference on Enabling Science and Nanotechnology, EsciNano*, Kuala Lumpur, Malaysia, 259-263.

[80] J. Ali, M. A. Jalil, I. S. Amiri, A. Afrozeh, M. Kouhnnavard & P. P. Yupapin, (2010) "Generation of tunable dynamic tweezers using dark-bright collision", presented at the *ICAMN, International Conference*, Prince Hotel, Kuala Lumpur, Malaysia.

[81] J. Ali, M. Aziz, I. S. Amiri, M. Jalil, A. Afrozeh, I. Nawi & P. Yupapin, (2010) "Soliton wavelength division in MRR and NRR Systems", presented at the *AMN-APLOC International Conference*, Wuhan, China.

[82] A. Afrozeh, M. Bahadoran, I. S. Amiri, A. R. Samavati, J. Ali & P. P. Yupapin, (2011) "Fast Light Generation Using Microring Resonators for Optical Communication", presented at the *National Science Postgraduate Conference, NSPC*, Universiti Teknologi Malaysia.

[83] J. Ali, H. Nur, S. Lee, A. Afrozeh, I. S. Amiri, M. Jalil, A. Mohamad & P. Yupapin, (2010) "Short and millimeter optical soliton generation using dark and bright soliton", presented at the *AMN-APLOC International Conference*, Wuhan, China.

[84] F. K. Mohamad, N. J. Ridha, I. S. Amiri, J. A. Saktioto & P. P. Yupapin, (2010) "Effect of Center Wavelength on MRR Performance", presented at the *International Conference on Experimental Mechanics (ICEM)*, Kuala Lumpur, Malaysia.

[85] J. Ali, A. Afrozeh, I. S. Amiri, M. Jalil & P. Yupapin, (2010) "Wide and narrow signal generation using chaotic wave", presented at the *Nanotech Malaysia, International Conference on Enabling Science & Technology*, Kuala Lumpur, Malaysia.

[86] F. K. Mohamad, N. J. Ridha, I. S. Amiri, J. A. Saktioto & P. P. Yupapin, (2010) "Finesse Improvements of Light Pulses within MRR System", presented at the *International Conference on Experimental Mechanics (ICEM)*, Kuala Lumpur, Malaysia.

[87] S. Saktioto, M. Hamdi, I. S. Amiri & J. Ali, (2010) "Transition of diatomic molecular oscillator process in THz region", presented at the *International Conference on Experimental Mechanics (ICEM)*, Legend Hotel, Kuala Lumpur, Malaysia.

[88] A. Afrozeh, I. S. Amiri, M. Bahadoran, J. Ali & P. P. Yupapin, (2012) "Simulation of Soliton Amplification in Micro Ring Resonator for Optical Communication", *Jurnal Teknologi (Sciences and Engineering)*, 55, 271-277.

[89] I. S. Amiri, G. Vahedi, A. Nikoukar, A. Shojaei, J. Ali & P. Yupapin, (2012) "Decimal Convertor Application for Optical Wireless Communication by Generating of Dark and Bright Signals of soliton", *International Journal of Engineering Research & Technology (IJERT)*, 1(5).

[90] A. Nikoukar, I. S. Amiri, A. Shahidinejad, A. Shojaei, J. Ali & P. Yupapin, (2012), "MRR quantum dense coding for optical wireless communication system using decimal convertor", in *Computer and Communication Engineering (ICCCE) Conference*, Malaysia, 770-774.

[91] A. Afrozeh, I. S. Amiri, J. Ali & P. P. Yupapin, (2012) "Determination Of FWHM For Soliton Trapping", *Jurnal Teknologi (Sciences and Engineering)*, 55, 77-83.

[92] M. A. Jalil, I. S. Amiri, C. Teeka, J. Ali & P. P. Yupapin, (2011) "All-optical Logic XOR/XNOR Gate Operation using Microring and Nanoring Resonators", *Global Journal of Physics Express*, 1(1), 15-22.

[93] I. S. Amiri, A. Nikoukar & J. Ali, (2010-2011) "Quantum Information Generation Using Optical Potential Well", presented at the *Network Technologies & Communications (NTC) Conference*, Singapore.


[94] S. Saktioto, J. Ali, M. Hamdi & I. S. Amiri, (2010) "Calculation and prediction of blood plasma glucose concentration", presented at the *ICAMN, International Conference*, Prince Hotel, Kuala Lumpur, Malaysia.

BIOGRAPHY OF AUTHORS:

I. S. Amiri, received his B. Sc (Hons, Applied Physics) from Public University of Oroumiyeh, Iran in 2001 and a gold medalist M. Sc. in Applied Physics from Universiti Teknologi Malaysia, in 2009. He is currently pursuing his Ph.D. in Nano Photonics at the Faculty of Science, Institute of Advanced Photonics Science, Nanotechnology Research Alliance, (UTM), Malaysia. He has authored/co-authored more than 120 technical papers published/accepted in journals/conferences and a book chapter. His research interests are in the field of optical soliton communication, signal processing, communication security, quantum cryptography, quantum chaos, optical tweezers and hybrid computing system.

A. Nikoukar, received his Associate of science in computer from Azad University of Khalkhal, Iran in 2009 and he received his B. Sc (Computer Software Engineering) from Azad University of Parsabad, Iran in 2011. He is currently pursuing his M. Sc. in Computer Science at the Faculty of Computer Science & Information Systems, Universiti Teknologi Malaysia (UTM), He has published several technical papers on computer networks and communication systems.

J Ali, received his Ph.D. in plasma physics from Universiti Teknologi Malaysia (UTM) in 1990. At present, he is a professor of photonics at the Institute of Advanced Photonics Science, Nanotech Research Alliance and the Physics Department of UTM. He has authored/co-authored more than 290 technical papers published in international journal, three books and a number of book chapters. His areas of interests are in FBGs, optical solitons, fiber couplers, and nanowaveguides. He is currently the Head of Nanophotonics research group, Nanotech Research Alliance, UTM. Dr. Jalil Ali is a member of OSA, SPIE, and the Malaysian Institute of Physics.

