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ABSTRACT 

Transverse vibrations of Timoshenko type beams carrying a concentrated mass have been investigated. Both 

ends of this mass-beam system have simply supports. Hamilton Principle has been used in order to derive 

equation of motion . For this coupled differential equations, approximately solutions have been searched by 

means of Method of Multiple Scales(a perturbation method). These solutions consist of two orders/parts; linear 

problem and nonlinear problem. One of them gives us natural frequency, and other one gives forced vibration 

solution. New symplectic method has been used to solve these coupled differential equations. Dynamic 

properties of the mass-beam system have been investigated using different control parameters; location and 

magnitude of the concentrated mass, rotational inertia and shear deformation effects.    

KEYWORDS: Timoshenko beam, symplectic approach, method of multiple scales, nonlinear vibrations. 

I. INTRODUCTION 

A vast class of engineering problems which arise in industrial, civil, aero spatial, mechanical, 

electronic, medical, and automotive applications have been modeled as moving continua. Some 

models have been simplified into string, membrane or beam due to effects subjected to. While 

investigating transverse vibrations of these models, some assumptions have being done such as Euler-

Bernoulli, Rayleigh, Timoshenko etc. beam theories. Studies using Euler-Bernoulli beam theory were 

reviewed by Nayfeh and Mook [45], and Nayfeh [46].  Some studies which carried out on 

Timoshenko beam theory [1], [2] are as follows: Taking into account various discontinuities which 

include cracks, boundaries and change in sections, Mei et al.[3] investigated axially loaded cracked 

Timoshenko beams. Deriving the transmission and reflection matrices of the beam, he examined 

relations between the injected waves and externally applied forces and moments. Loya et al.[4] 

handled problem of the cracked Timoshenko beams and obtained it natural frequencies. Using a new 

approach based on the dynamic stiffness solution, Banarjee [5] studied the free vibration problem of 

rotating Timoshenko beams. Using the Timoshenko and Euler–Bernoulli beam which replaced on 

elastic Winkler foundation, Ruge and Birk [6] examined dynamic stiffness coefficients related with 

the amplitude. Handling the Timoshenko beam, van Rensburg and van der Merwe [7] presented a 

systematic approach for Eigen-value problems associated with the system of partial differential 

equations. Hijmissen and van Horssen [8], investigated the transverse vibrations of the Timoshenko 

beam. They studied the influences of the beam parameters on decrease in magnitude of the 

frequencies. Majkut [9] derived a method a single differential equation of the fourth order which 

describes free and forced vibrations of a Timoshenko beam. Gunda [10] investigated effects of 

transverse shear and rotary inertia on vibration of the uniform Timoshenko beams. Shahba et al.[11] 

studied axially functionally graded tapered Timoshenko beams. Rossi et al.[12] examined analytical 

and exact solution of the Timoshenko beam model. For different supporting configuration, they found 

frequency coefficients. Geist and Mclaughlin [13], studied uniform Timoshenko beam with free ends. 

They gave a necessary and sufficient condition for determining eigenvalues for which there exist two 

linearly independent eigenfunctions. Esmailzadeh and Ohadi [14] studied non-uniform Timoshenko 
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beam subjected to axial and tangential loads. They investigated frequency behavior of uniform and 

non-uniform beams with various boundary conditions; clamped supported, elastically supported, free 

end mass and pinned end mass. Zhong and Guo [15] investigated large-amplitude vibrations of simply 

supported Timoshenko beams with immovable ends. They studied on direct solution of the governing 

differential equations. Grant [16] examined uniform beams carrying a concentrated mass. For 

different end conditions, he investigated cross-sectional effects and effects of concentrated mass on 

frequency. Abramovich and Hamburger [17], studied a cantilever beam with a tip mass, examined the 

influence of rotary inertia and shear deformation on the natural frequencies of the system. 

Abramovich and Hamburger [18] studied uniform cantilever Timoshenko beam with a tip mass. They 

investigated the influence of rotary inertia and shear deformation on the natural frequencies of the 

beam. Chan and Wang [19] examined the problem of a Timoshenko beam partially loaded with 

distributed mass at an arbitrary position. They presented computational results on frequency 

variations. Cha and Pierre [20] studied Timoshenko beams with lumped attachments. They used a 

novel approach to determine the frequency equations of the combined dynamical system. Chang [21] 

studied simply supported beam carrying a rigid mass at the middle. Neglecting the effect of transverse 

shear deformation, he found general solution including both the rotatory inertia of the beam and of the 

concentrated mass. Lin [22] studied multi-span Timoshenko beam carrying multiple point masses, 

rotary inertias, linear springs, rotational springs and spring–mass systems. He investigated its free 

vibration characteristics. Posiadala [23] presented the solution of the free vibration problem of a 

Timoshenko beam with additional elements attached. He showed the influence of the various 

parameters on the frequencies of the combined system. Wu and Chen [24] studied Timoshenko beam 

carrying multiple spring-mass systems. They obtained natural frequencies for different supporting 

conditions; clamped-free, simple-simple, clamped-clamped and clamped-simple. Lin and Tsai [25], 

handled multi-span beam carrying multiple spring–mass systems. They studied the effects of attached 

spring–mass systems on the free vibration characteristics. Free vibration of a multi-span Timoshenko 

beam carrying multiple spring-mass systems has been studied by Yesilce et al.[26]. Later axial force 

effect in this multiple spring-mass systems has been investigated by Yesilce and Demirdag [27]. 

Using numerical assembly technique, Yesilce [41] studied  vibrations of an axially-loaded 

Timoshenko multi-span beam carrying a number of various concentrated elements. Mei [42] studied 

the effects of lumped end mass on vibrations of a Timoshenko beam. The effects of lumped end mass 

on bending vibrations of Timoshenko beam has been investigated. Dos Santos and Reddy [43] studied 

free vibration analysis of Timoshenko beams and compared natural frequencies of the beam among 

classical elasticity, non-local elasticity, and modified couple stress theories. Stojanović and Kozić [44] 

studied vibration and buckling of a Rayleigh and Timoshenko double-beam system continuously 

joined by a Winkler elastic layer under compressive axial loading. They found general solutions of 

forced vibrations of beams subjected to arbitrarily distributed continuous loads. Li et al.[28] 

investigated nonlinear transverse vibrations of axially moving Timoshenko beams with two free ends. 

For the case of without internal resonances, they examined the relationships between the nonlinear 

frequencies and the initial amplitudes at different axial speeds and the nonlinear coefficients. Wu and 

Chen [29], investigated free and forced vibration responses for a uniform cantilever beam carrying a 

number of “spring damper-mass” systems. Maiz et al.[30] studied to determine the natural frequencies 

of vibration of a Bernoulli–Euler beam carrying a finite number of masses at arbitrary positions, 

having into account their rotatory inertia. Recently, Ghayesh et al.[31.32] developed a general 

solution procedure for nonlinear vibrations of beams with intermediate elements.  

Background of the new symplectic method is as follows; Most recently, Lim et al.[33,34] 

proposed a new symplectic approach for the bending analysis of thin plates with two opposite edges 

simply supported. In their analysis, a series of bending moment functions were introduced to construct 

the Pro–Hellinger–Reissner variational principle, which is an analogy to plane elasticity. As for 

vibration analysis of plates, Zou [35] reported an exact symplectic geometry solution for the static and 

dynamic analysis of Reissner plates, but it was not exactly the same as the symplectic elasticity 

approach described above because trial mode shape functions for the simply supported opposite edges 

were still adopted in his analysis. To derive the exact free vibration solutions of moderately thick 

rectangular plates, Li and Zhong [36] proposed a new symplectic approach. Using new symplectic 

method and taking the type of the beam as Euler, Sarıgül and Boyacı [37] presented primary 

resonance of axially moving beams carrying a concentrated mass.  
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In this study, transverse vibrations of Timoshenko beam carrying a concentrated mass were handled. 

In section 2, problem being handled has been defined, parameters affecting on it determined and 

equations of motion has been obtained by using Hamilton Principle, which is well-known Energy 

Approach. In section 3, analytical solutions have been searched by means of Method of Multiple 

Scales (a perturbation method) under assumption of primary resonance. New Symplectic Method has 

been proposed to solve coupled differential equations. In section 4, numerical results has been 

obtained for different mass ratios, mass locations, shear correction coefficients, and rotational inertia 

effects. From natural frequencies and frequency–amplitude curves, vibrational characteristics of the 

Timoshenko type beam carrying a concentrated mass. For compatibility, some comparisons have been 

done with studies from Özkaya et al.[38-39] and Pakdemirli et al.[40]. 

II. PROBLEM FORMULATION 

Transversally vibrating beam using Timoshenko theory has been drawn in Fig.1. The study could be 

seen a beam-mass system with simply supports. M concentrated mass is placed on the beam arbitrarily 

along L distance. The model with 1 mass is made of 2 parts. In order to formulate the model 

mathematically, energy of the system has been used by means of Hamilton’s principle. The whole 

system consists of kinetic (T) and potential (U) as shown below; 

 

 

 

 
Figure 1. Timoshenko beam carrying a concentrated mass. 
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where t /  and x /  denote partial differentiations with respect to the time t, and the spatial variable 

x, respectively. w is the transverse displacement and  is its slope,  is the mass density per unit 

volume, A is the cross section area of the beam, I and J are is the moments of the inertia, E is the 

Young’s modulus, G is the shear modulus, and k is shear correction coefficient, respectively.  

It is assumed that Timoshenko beams deform within linear elastic regime and therefore Hooke’s law 

is valid. The nonlinear membrane strain-displacement, bending curvature-displacement and shear 

strain-displacement relations of the beam are given as; 
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where u, w, , ε, κ and γ represent the axial displacement, the deflection, the cross-section rotation, the 

membrane strain, the bending curvature, and the shear strain, respectively. 

Before processing, we must present following dimensionless quantities under notation i=1,2; 
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where η is the dimensionless mass location, and r is the radius of gyration of the beam cross section.  

By means of Hamilton’s principle, one can substitute Eqs.(2-3) into Eq.(1) and performing necessary 

calculations it is seen that longitudinal terms( iû ) can be eliminated from the equations. Adding 

dimensionless damping ( iμ̂ ) and forcing terms ( F̂ ) into remained equations in process, one can obtain 

the dimensionless form of the equations of motion;  

M 
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http://en.wikipedia.org/wiki/Shear_stress
http://en.wikipedia.org/wiki/Inertia
http://en.wikipedia.org/wiki/Shear_stress


International Journal of Advances in Engineering & Technology, May 2013. 

©IJAET                                                                                                          ISSN: 2231-1963 

623 Vol. 6, Issue 2, pp. 620-633  

 

 
t

w

t

w
tF

x

w

xx

w

xx

w
xd

x

w
xd

x

w

x

w

x
i

i
i

i
iiii

i
i

ˆ

ˆ
ˆ

ˆ

ˆ
.cosˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ1

2

1
1

ˆ

1

ˆ

ˆ
ˆ

ˆ

ˆ
ˆ

ˆ

ˆ

2

1

ˆ

ˆ

ˆ 2

222

2

22
2

12
1

0



















































































































 










2

2
22

2

2
22

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ1

2

1
1

ˆˆ

ˆ

ˆ

ˆ1

2

1
1

ˆ

ˆ

txx

w

xxx

w

x

w iiiii
i

i



















































































 






 , i=1,2.                                (6) 

Matching and boundary conditions could be written as follows; 
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Here, some simplifications have been done as follows 
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where α is the dimensionless mass parameter,   is the slenderness ratio,  is the poisson`s ratio and  

is the shear/flexural rigidity ratio. 

III. ANALYTICAL SOLUTIONS 

We apply the Method of Multiple Scales (MMS), a perturbation technique (see ref. [46]), directly to 

the partial-differential equations and its boundary and continuity conditions. After removing symbol 

of ^ for easy readability of equations and impending i=1,2 in this method, we assume expansions as 

follows; 
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where ε is a small book-keeping parameter artificially inserted into the equations. This parameter can 

be taken as 1 at the end upon keeping in mind, however, that deflections are small. Therefore, we 

investigated a weak nonlinear system. T0=t is the fast time scale, T1=ε t and, T2=ε2 t are the slow time 

scales in MMS. 

Now consider only the primary resonance case and hence, the forcing and damping terms are 

ordered as ii FεF 3ˆ  ,  ii ε  2ˆ   so that they counter the effect of the nonlinear terms. Derivatives with 

respect to time were written in terms of the Tn as follow: 

210 DDD
t

2 



,  20

2
1

2
10

2
02

2

22 DDDDDD
t





 , Dn≡∂ / ∂Tn.                             (10) 

3.1. Linear Problem 

First order of Perturbation Method could be defined as linear problem. Substituting Eqs.(9)-(10) into 

Eqs.(6)-(7) and separating each order of ε, one obtains the followings; 
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order ε3:  
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Linear problem is governed by Eq.(11) at order ε1. For solution to the problem, following forms are 

assumed 
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where overbar denotes the complex conjugate of the expression. 1, Y, A represent natural frequency, 

eigenfunction and amplitude of the transverse term, respectively.  And similarly 2, , B represent 

frequency, eigenfunction and amplitude of the rotational term, respectively.  

        Substituting Eq.(14) into Eq.(11), one obtains following equations which satisfies the mode 

shapes:   
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Complex conjugates of the mode shapes are the same for both transverse and rotational terms. Thus, 

there is no need to write the complex conjugate equations (cc).  

3.2. Non-Linear Problem 

Adding the additive of the other orders according to the first order gives us non-lınear 

problem. In order to propose a solution at order ε2, D1wi1=0 and D1i1=0 must be done. Thus, the form 
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Also, this means A=A(T2), B=B(T2). Thanks to perturbation method, order ε2 was neglected and 

according to Eq.(12), following equations at order ε3 were obtained 
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(16) 

        Solution to Eq.(16) at order ε3 can be written as; 
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where Ψ and φ are the functions for the secular terms, W and Θ are the functions for the non-secular 

terms and cc denotes complex conjugate of the preceding terms. 

Taking excitation frequency as  2
1  which in  is defined detuning parameter of order O(1), 

inserting expressions (17) into Eq.(16) and considering only the terms producing secularities, one has 
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(18) 

3.3. Using Symplectic Method 

According to Symplectic Method, Eq.(15) can be converted into following form 

i
Ti

i
Ti

eAYeA  00 11  ,   i
Ti

i
Ti

eBeB  00 22 
                                                              

  0010201 2
1  i

Ti
i

Ti
i

Ti YeAeBeA   ,   0.02020201 2
2  i

Ti
i

Ti
i

Ti
i

Ti eBeBeBeA      (19) 

Eq.(19) gives the following matrix form of the problem.  
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Expressing Eq.(20) in the matrix form as X
X

H
x





 and choosing form xeX  for the solution gives 

us 

 X
X






x
                                 (21) 

where (x) is the corresponding eigenvector and  is the eigenvalue. From eigenvalue problem at 

Eq.(20), there are four eigenvalues. Thus, solution of the linear problem can be written as follows; 

  x
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        (22) 

         A solvability conditions must be satisfied for the non-homogenous equation in order to have a 

solution where the homogenous equation has a nontrivial solution [45,46]. For homogeneous problem, 

if the solution at order ε3 is separated as secular and non-secular terms and the solvability condition is 

applied in Eq.(18) for eliminating secular terms, Eq.(18) can be converted to new symplectic form as 

follows:    
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If one invokes the solvability procedures given in Nayfeh and Mook[45] to these equations, the 

following trial functions can be obtained;  

 111
0102 YeAeBu TiTi    , 112

0102 YeAeBu TiTi    , 13
01 YeAu Ti ,  14

02  TieBu                    

 225
0102 YeAeBu TiTi    , 226

0102 YeAeBu TiTi    ,  27
01 YeAu Ti ,  28

02  TieBu     (24) 

Then, the trial functions can be used for non-homogeneous problem. After necessary calculations, one 

obtains the following equations; 
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Thus, after simplifications on terms having (^) are described as follow for numerical analysis,  
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Eq.(25) can be written as follows; 
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Simplification yields following formation; 
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Complex amplitude A and B can be written in terms of real amplitudes a and b, and phases ς1 and ς2 

           2221
2222 2

1
,

2

1 TiTi eTbTBeTaTA                               (29) 

Substituting Eq.(29) into Eq.(28), and separating real and imaginary parts, following amplitude-phase 

modulation equations can be finally obtained; 
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4
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1
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4

1 3
21111 faamfaam 







  , 0

1

8

1ˆ,0ˆ
3

2
222 


 babdbd  (30) 

where τ is defined as 

12   T                                 (31) 

IV. NUMERICAL RESULTS 

4.1 Solutions to the Linear Problem; Natural Frequencies 

Table 1 First five natural frequencies in transversal directions for different mass locations and mass ratios. 

 n=0.01 n=1.0 

ν      11   21   31   41   51   11   21   31   41   51  

100 0.1 

0.1 8.5444 25.4252 42.4182 59.4685 77.8985 2.9868 6.1949 9.3400 12.4650 15.5911 

0.2 8.3353 24.2319 42.6038 63.2669 83.6472 2.9796 6.1826 9.3298 12.5035 15.6752 

0.3 8.1005 24.4467 45.3470 62.4807 77.2918 2.9706 6.1827 9.3662 12.5031 15.5945 

0.4 7.9297 25.6206 44.2219 60.2674 83.6472 2.9636 6.1950 9.3549 12.4682 15.6753 
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0.5 7.8686 26.4159 41.8846 64.8496 76.9886 2.9609 6.2027 9.3257 12.5256 15.5952 

1 

0.1 7.7659 17.8116 33.0022 53.2161 73.8996 2.9614 6.1226 9.0739 12.0325 15.1311 

0.2 6.3583 17.3434 37.8566 60.9826 83.6472 2.8891 6.0131 9.0657 12.3877 15.6752 

0.3 5.4820 19.5463 44.1712 55.3504 71.2801 2.8065 6.0241 9.3380 12.3697 15.2315 

0.4 5.0422 23.1037 39.4357 53.8981 83.6472 2.7458 6.1319 9.2488 12.1761 15.6752 

0.5 4.9087 26.4160 32.9967 64.8496 67.6898 2.7240 6.2027 9.0389 12.5255 15.2508 

10 

0.1 4.0025 12.1526 31.3779 52.4515 73.4090 2.6752 5.2022 7.7876 11.1475 14.5941 

0.2 2.6259 14.5620 36.8107 60.4257 83.6472 2.1464 4.9381 8.4969 12.2360 15.6753 

0.3 2.1133 17.6704 43.5870 53.3905 70.5681 1.8290 5.2413 9.2754 12.1440 14.8707 

0.4 1.8924 21.8393 37.6782 52.7989 83.6472 1.6732 5.7499 8.9876 11.8026 15.6753 

0.5 1.8288 26.4160 29.9024 64.8496 65.8654 1.6266 6.2027 8.3534 12.5256 14.9226 

10000 

0.1 

0.1 9.7563 37.8414 82.0320 142.1523 220.0498 2.9909 6.1998 9.3653 12.5197 15.6700 

0.2 9.5219 36.1283 81.6273 149.6268 235.2649 2.9841 6.1913 9.3629 12.5240 15.6762 

0.3 9.2563 36.3592 86.6157 148.7995 219.7275 2.9756 6.1914 9.3712 12.5241 15.6700 

0.4 9.0607 38.0507 84.8026 143.4769 235.2649 2.9689 6.1998 9.3686 12.5197 15.6762 

0.5 8.9902 39.1621 80.6498 153.0670 219.5412 2.9663 6.2050 9.3619 12.5267 15.6700 

1 

0.1 8.9774 29.6046 64.8077 123.3281 203.6078 2.9679 6.1539 9.3063 12.4597 15.6181 

0.2 7.4384 26.7286 72.2423 144.8036 235.2649 2.9017 6.0788 9.2905 12.5042 15.6764 

0.3 6.3820 29.5184 85.1838 138.5852 199.5854 2.8260 6.0880 9.3638 12.5034 15.6224 

0.4 5.8358 34.9526 78.5128 128.5631 235.2649 2.7704 6.1615 9.3420 12.4677 15.6762 

0.5 5.6691 39.1621 66.6606 153.0670 196.8681 2.7503 6.2051 9.2859 12.5267 15.6239 

10 

0.1 5.3120 19.6196 58.0257 118.9895 200.5257 2.7459 5.7696 8.8975 12.0958 15.3284 

0.2 3.2510 21.8794 69.5544 143.5071 235.2649 2.2972 5.5404 9.0105 12.4240 15.6762 

0.3 2.5224 26.5618 84.5993 134.6713 195.0857 1.9834 5.7310 9.3388 12.4257 15.4493 

0.4 2.2209 33.4018 75.8119 124.5349 235.2649 1.8195 6.0400 9.2523 12.2975 15.6762 

0.5 2.1355 39.1621 61.2882 153.0670 190.8995 1.7692 6.2051 9.0380 12.5267 15.4722 
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Figure 2. Natural frequency - frequency ratio for three modes of the beam. 

In numerical analysis, according to eigenvalue problem solutions ( i. ,  ) can be rewritten in the 

following form: 

         xcxcxcxcxY iiiii  sinhcoshsincos 4321  , 

         xdxdxdxdx iiiii  sinhcoshsincos 4321        (32) 

Inserting these forms into Eq.(20), one can obtain the following solutions: 
         xcxcxcxcxY iiiii  sincossinhcosh 4321       
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In our study for natural frequencies, assumption of 12  n  has been done so that n can be defined as 

a ratio of rotational frequency to transverse frequency. After obtaining eigenvalues from Eq.(20) and 

using solution function at Eq.(32), transverse natural frequencies(ω1) can be calculated via conditions 

at Eq.(15). In numerical studies, material properties were considered as constant due to slenderness 

ratio(), and shear/flexural rigidity ratio() or Poisson’s ratio() were investigated in detail. 

Throughout numerical calculations, Poisson’s ratio and shear correction coefficient are assumed 0.30 

and k=5/6, respectively.  

Using the slenderness ratio(=10000), mass ratio(α=1), mass location (η=0.5), one can plot ω1 versus 

n graphs for first three modes as seen in Fig.2. At this figure, increasing frequency ratio decreases 
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linear natural frequencies. At 0<n<0.5, this decreasing is the fastest for the second mode’s natural 

frequency.  

    
 Figure 3. Natural transverse frequencies via frequency    Figure 4. Natural transverse frequencies via mass  

      ratio  for different mass locations, α=1, ν =10000.        location for different mass ratios,n=0.1, ν =100.                                             

In Fig.3, change of transverse frequency versus frequency ratio has been investigated for first mode 

vibration of the beam.  If the mass is kept near the ends of the beam, high natural frequencies can be 

obtained. Increasing the frequency ratio decreases natural frequencies. Selecting slenderness ratio as 

100, change of transverse frequency versus mass location has been investigated for first mode 

vibration of the beam in Fig. 4. Increasing the mass magnitude decreases natural frequencies.  

The first five natural frequencies are given for n=0.01 and n=1.00 at Table 1. From these values, 

increasing mass location and mass ratio resulted in decreasing natural frequencies only for the first 

mode. Other modes’ natural frequencies are very complex. If one makes comparison between both 

tables, lower frequency ratios having higher natural frequencies can be seen. This means that energy 

of the system is transferred to rotation of the beam. This means that energy is divided equally between 

rotational and transverse vibration modes in case of n=1.    

4.1 Solutions to the Non-Linear Problem; Force-response curves 

 
               Figure 5. Force-response curves for different,          Figure 6. Force-response curves for different, 

                    slenderness ratios n=1.0, η=0.5, α=1.                    frequency ratio η=0.5, α=0.1, ν=10000. 

For steady state in Eqs.(30), amplitudes vanish with increasing time. This is in brief; 

00 &0&0 bbaaba    (Constant)                                 (34) 

Note that a0 and b0 are the steady state real amplitudes of the response. 

Using Eq.(30), one obtains following equations; 

  
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1 3
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                                    (35) 

After some manipulations for steady state case, we obtain following detuning parameter; 
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     (36) 

Here,   has been described as frequency correction coefficient to linear frequency.   

 
          Figure 7. Force-response curves for different              Figure 8. Force-response curves for different  

                             mass ratio,n=1, η=0.3, ν=100.                             mass ratio,n=0.1, η=0.5, ν=10000. 

 

Using Eq.(36), frequencyresponse graphs were drawn at Figs.5-8. f
~

=1 and ~ =0.1 were taken at 

these graphs. Frequencyresponse graphs via different slenderness ratios were given in Fig.5 for 

n=1.0, η=0.5, and α=1. Graph shows that decreasing  increases hardening type behavior. Maximum 

amplitude value increases while  increases and jump region gets greater.  

Frequencyresponse graphs via different frequency ratios were given in Fig.6 for α=0.1, η=0.5, 

=10000. Graph shows that increasing frequency ratio (n) increases hardening type behavior. 

Maximum amplitude value increases while n increases and jump region gets greater. Another thing 

seen from this graph is the hardening behavior is less in case of lower frequency ratio.  

Frequencyresponse graphs via different concentrated mass magnitudes were given in Figs. 7-8. In 

Fig.7, graph shows that increasing mass ratio decreases hardening type behavior. Maximum amplitude 

value increases while the mass ratio increases at a certain location. In Fig.8, graph shows increasing 

mass ratio makes jump region wider.  

 
         Figure 9. Force-response curves for different              Figure 10. Force-response curves for different  

                    mass locations, n=1, α=0.1, ν=100.                          mass locations, n=1, α=1, ν=10000. 
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Figure 11. Force-response curves for different mass locations, n=0.1, α=1, ν=10000. 

 

Frequencyresponse graphs via different concentrated mass locations were given in Figures. 9-11. In 

Fig. 9, graph shows moving mass location from end points to the middle point of the beam causes 

hardening type behavior. For different frequency ratio (n=1) in Fig. 10, moving mass location makes 

less hardening behavior and small rising in maximum amplitude values. Changing some control 

parameters, our results become compatible with the studies of Pakdemirli et.al [40] and Özkaya et.al 

[38] which are based on Euler type beam. In Fig. 11, maximum amplitude value increases while 

concentrated mass gets closer to the midpoint and jump region gets wider.  

V. CONCLUSIONS 

In this study, nonlinear vibrations were investigated for the Timoshenko type beams carrying 

concentrated mass. For that purpose, equation of motions has been derived by using by using 

Hamilton Principle. To solve this coupled differential equations analytically Method of Multiple 

Scales (a perturbation method) has been used. The problem has been defined with solution orders; 

linear problem and non-linear problem. Solutions of the linear problem correspond to the natural 

frequencies. Assuming a ratio between rotational mode frequency and transversal mode frequency and 

defining this ratio as the frequency ratio, natural frequencies has been obtained by using different 

control parameters: location and magnitude of the concentrated mass, slenderness and frequency ratio. 

Natural frequencies decrease with increasing frequency ratio (n). Increasing frequency ratio resulted 

in sharing energy of the system between rotational and transversal modes. Holding mass up close to 

middle location of the beam would result in decreasing natural frequencies. And natural frequencies 

decrease with increasing the mass magnitude. Solutions of the non-linear problem correspond to 

forced vibration results, and were obtained by means frequency response curves in the case of steady-

state of the system. Replacing concentrated mass to middle point of the beam instead of end points, 

would result in expanding multi-valued region, but would not change maximum amplitudes of 

vibrations for Timoshenko type beams. Using different slenderness and frequency ratio, one can 

obtain Euler-Bernoulli results; multi-valued region doesn’t expand, maximum amplitudes of 

vibrations become larger. For low magnitude of the mass multi-valued regions are wide, but 

maximum amplitudes of vibrations are small, but for great magnitude of the mass the multi-valued 

regions are narrow, but maximum amplitudes of vibrations are larger. Frequency ratio causes 

hardening type behavior on the system. Thus, multi-valued region expands, maximum amplitudes of 

vibrations become larger as these parameters increase. When compared wıth Euler Bernoulli type 

beams generally speaking, Timoshenko type beams have hardening behavior, wide multi valued 

regions and larger maximum amplitudes of vibrations. As a future work nonlinear vibrations of 

Timoshenko type moving continua with any attachments (spring, mass) could be analyzed.   

This study could be seen as a key stone to study axially moving Timoshenko beams, because problem 

using Euler-Bernoulli beam theory has been investigated by Sarıgül and Boyacı [37]. In case of 

carrying multiple concentrated masses, vibrations of plate using Timoshenko beam theory could be 

investigated. 
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