International Journal of Advances in Engineering & Technology, May 2013.
OIJAET ISSN: 2231-1963

NONLINEAR VIBRATIONS OF TIMOSHENKO BEAMS
CARRYING A CONCENTRATED MASS

M. Sarigiil and H. Boyaci

Celal Bayar University, Department of Mechanical Engineering,
45140 - Muradiye, Manisa, TURKEY

ABSTRACT

Transverse vibrations of Timoshenko type beams carrying a concentrated mass have been investigated. Both
ends of this mass-beam system have simply supports. Hamilton Principle has been used in order to derive
equation of motion . For this coupled differential equations, approximately solutions have been searched by
means of Method of Multiple Scales(a perturbation method). These solutions consist of two orders/parts; linear
problem and nonlinear problem. One of them gives us natural frequency, and other one gives forced vibration
solution. New symplectic method has been used to solve these coupled differential equations. Dynamic
properties of the mass-beam system have been investigated using different control parameters; location and
magnitude of the concentrated mass, rotational inertia and shear deformation effects.
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I. INTRODUCTION

A vast class of engineering problems which arise in industrial, civil, aero spatial, mechanical,
electronic, medical, and automotive applications have been modeled as moving continua. Some
models have been simplified into string, membrane or beam due to effects subjected to. While
investigating transverse vibrations of these models, some assumptions have being done such as Euler-
Bernoulli, Rayleigh, Timoshenko etc. beam theories. Studies using Euler-Bernoulli beam theory were
reviewed by Nayfeh and Mook [45], and Nayfeh [46]. Some studies which carried out on
Timoshenko beam theory [1], [2] are as follows: Taking into account various discontinuities which
include cracks, boundaries and change in sections, Mei et al.[3] investigated axially loaded cracked
Timoshenko beams. Deriving the transmission and reflection matrices of the beam, he examined
relations between the injected waves and externally applied forces and moments. Loya et al.[4]
handled problem of the cracked Timoshenko beams and obtained it natural frequencies. Using a new
approach based on the dynamic stiffness solution, Banarjee [5] studied the free vibration problem of
rotating Timoshenko beams. Using the Timoshenko and Euler—Bernoulli beam which replaced on
elastic Winkler foundation, Ruge and Birk [6] examined dynamic stiffness coefficients related with
the amplitude. Handling the Timoshenko beam, van Rensburg and van der Merwe [7] presented a
systematic approach for Eigen-value problems associated with the system of partial differential
equations. Hijmissen and van Horssen [8], investigated the transverse vibrations of the Timoshenko
beam. They studied the influences of the beam parameters on decrease in magnitude of the
frequencies. Majkut [9] derived a method a single differential equation of the fourth order which
describes free and forced vibrations of a Timoshenko beam. Gunda [10] investigated effects of
transverse shear and rotary inertia on vibration of the uniform Timoshenko beams. Shahba et al.[11]
studied axially functionally graded tapered Timoshenko beams. Rossi et al.[12] examined analytical
and exact solution of the Timoshenko beam model. For different supporting configuration, they found
frequency coefficients. Geist and Mclaughlin [13], studied uniform Timoshenko beam with free ends.
They gave a necessary and sufficient condition for determining eigenvalues for which there exist two
linearly independent eigenfunctions. Esmailzadeh and Ohadi [14] studied non-uniform Timoshenko
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beam subjected to axial and tangential loads. They investigated frequency behavior of uniform and
non-uniform beams with various boundary conditions; clamped supported, elastically supported, free
end mass and pinned end mass. Zhong and Guo [15] investigated large-amplitude vibrations of simply
supported Timoshenko beams with immovable ends. They studied on direct solution of the governing
differential equations. Grant [16] examined uniform beams carrying a concentrated mass. For
different end conditions, he investigated cross-sectional effects and effects of concentrated mass on
frequency. Abramovich and Hamburger [17], studied a cantilever beam with a tip mass, examined the
influence of rotary inertia and shear deformation on the natural frequencies of the system.
Abramovich and Hamburger [18] studied uniform cantilever Timoshenko beam with a tip mass. They
investigated the influence of rotary inertia and shear deformation on the natural frequencies of the
beam. Chan and Wang [19] examined the problem of a Timoshenko beam partially loaded with
distributed mass at an arbitrary position. They presented computational results on frequency
variations. Cha and Pierre [20] studied Timoshenko beams with lumped attachments. They used a
novel approach to determine the frequency equations of the combined dynamical system. Chang [21]
studied simply supported beam carrying a rigid mass at the middle. Neglecting the effect of transverse
shear deformation, he found general solution including both the rotatory inertia of the beam and of the
concentrated mass. Lin [22] studied multi-span Timoshenko beam carrying multiple point masses,
rotary inertias, linear springs, rotational springs and spring—mass systems. He investigated its free
vibration characteristics. Posiadala [23] presented the solution of the free vibration problem of a
Timoshenko beam with additional elements attached. He showed the influence of the various
parameters on the frequencies of the combined system. Wu and Chen [24] studied Timoshenko beam
carrying multiple spring-mass systems. They obtained natural frequencies for different supporting
conditions; clamped-free, simple-simple, clamped-clamped and clamped-simple. Lin and Tsai [25],
handled multi-span beam carrying multiple spring—mass systems. They studied the effects of attached
spring—mass systems on the free vibration characteristics. Free vibration of a multi-span Timoshenko
beam carrying multiple spring-mass systems has been studied by Yesilce et al.[26]. Later axial force
effect in this multiple spring-mass systems has been investigated by Yesilce and Demirdag [27].
Using numerical assembly technique, Yesilce [41] studied vibrations of an axially-loaded
Timoshenko multi-span beam carrying a number of various concentrated elements. Mei [42] studied
the effects of lumped end mass on vibrations of a Timoshenko beam. The effects of lumped end mass
on bending vibrations of Timoshenko beam has been investigated. Dos Santos and Reddy [43] studied
free vibration analysis of Timoshenko beams and compared natural frequencies of the beam among
classical elasticity, non-local elasticity, and modified couple stress theories. Stojanovi¢ and Kozi¢ [44]
studied vibration and buckling of a Rayleigh and Timoshenko double-beam system continuously
joined by a Winkler elastic layer under compressive axial loading. They found general solutions of
forced vibrations of beams subjected to arbitrarily distributed continuous loads. Li et al.[28]
investigated nonlinear transverse vibrations of axially moving Timoshenko beams with two free ends.
For the case of without internal resonances, they examined the relationships between the nonlinear
frequencies and the initial amplitudes at different axial speeds and the nonlinear coefficients. Wu and
Chen [29], investigated free and forced vibration responses for a uniform cantilever beam carrying a
number of “spring damper-mass” systems. Maiz et al.[30] studied to determine the natural frequencies
of vibration of a Bernoulli-Euler beam carrying a finite number of masses at arbitrary positions,
having into account their rotatory inertia. Recently, Ghayesh et al.[31.32] developed a general
solution procedure for nonlinear vibrations of beams with intermediate elements.

Background of the new symplectic method is as follows; Most recently, Lim et al.[33,34]
proposed a new symplectic approach for the bending analysis of thin plates with two opposite edges
simply supported. In their analysis, a series of bending moment functions were introduced to construct
the Pro—Hellinger—Reissner variational principle, which is an analogy to plane elasticity. As for
vibration analysis of plates, Zou [35] reported an exact symplectic geometry solution for the static and
dynamic analysis of Reissner plates, but it was not exactly the same as the symplectic elasticity
approach described above because trial mode shape functions for the simply supported opposite edges
were still adopted in his analysis. To derive the exact free vibration solutions of moderately thick
rectangular plates, Li and Zhong [36] proposed a new symplectic approach. Using new symplectic
method and taking the type of the beam as Euler, Sarigiil and Boyac1 [37] presented primary
resonance of axially moving beams carrying a concentrated mass.
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In this study, transverse vibrations of Timoshenko beam carrying a concentrated mass were handled.
In section 2, problem being handled has been defined, parameters affecting on it determined and
equations of motion has been obtained by using Hamilton Principle, which is well-known Energy
Approach. In section 3, analytical solutions have been searched by means of Method of Multiple
Scales (a perturbation method) under assumption of primary resonance. New Symplectic Method has
been proposed to solve coupled differential equations. In section 4, numerical results has been
obtained for different mass ratios, mass locations, shear correction coefficients, and rotational inertia
effects. From natural frequencies and frequency—amplitude curves, vibrational characteristics of the
Timoshenko type beam carrying a concentrated mass. For compatibility, some comparisons have been
done with studies from Ozkaya et al.[38-39] and Pakdemirli et al.[40].

II. PROBLEM FORMULATION

Transversally vibrating beam using Timoshenko theory has been drawn in Fig.1. The study could be
seen a beam-mass system with simply supports. M concentrated mass is placed on the beam arbitrarily
along L distance. The model with 1 mass is made of 2 parts. In order to formulate the model
mathematically, energy of the system has been used by means of Hamilton’s principle. The whole
system consists of kinetic (T) and potential (U) as shown below;

w(x,t),7
Al )

T )
Figure 1. Timoshenko beam carrying a concentrated mass.
t,
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where o/ot and 6/0x denote partial differentiations with respect to the time t, and the spatial variable

X, respectively. w is the transverse displacement and @ is its slope, p is the mass density per unit
volume, A is the cross section area of the beam, | and J are is the moments of the inertia, E is the
Young’s modulus, G is the shear modulus, and k is shear correction coefficient, respectively.

It is assumed that Timoshenko beams deform within linear elastic regime and therefore Hooke’s law
is valid. The nonlinear membrane strain-displacement, bending curvature-displacement and shear
strain-displacement relations of the beam are given as;

2 2
QL[ 20 (O 0 LIS ()
ox 2 6X ax 2 ax ax OX OX

where u, w, 6 ¢, k and y represent the axial displacement, the deflection, the cross-section rotation, the
membrane strain, the bending curvature, and the shear strain, respectively.
Before processing, we must present following dimensionless quantities under notation i=1,2;

W'(*’fﬁw, ﬁi(&f)=%x’t), ARD=rakY, 1=Ar, J=AL, =X, p=2 i= t/ /PEAIL

where 7 is the dimensionless mass location, and r is the radius of gyration of the beam cross section.
By means of Hamilton’s principle, one can substitute Egs.(2-3) into Eq.(1) and performing necessary
calculations it is seen that longitudinal terms(d;) can be eliminated from the equations. Adding

dimensionless damping ( 4 ) and forcing terms ( F ) into remained equations in process, one can obtain
the dimensionless form of the equations of motion;

gi=
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Matchlng and boundary conditions could be written as follows;
W, = 601 =0 for x=0, wz_% 0 for 8=1,
oX X

I 6(321:% for %=7 (7)
Here, some simplifications have been done as follows
M L kG E 1
oAl VTr FTEY G ®)

where a is the dimensionless mass parameter, v is the slenderness ratio, v is the poisson’s ratio and y
is the shear/flexural rigidity ratio.

I1l. ANALYTICAL SOLUTIONS

We apply the Method of Multiple Scales (MMS), a perturbation technique (see ref. [46]), directly to
the partial-differential equations and its boundary and continuity conditions. After removing symbol
of ” for easy readability of equations and impending i=1,2 in this method, we assume expansions as
follows;
W(%,E)=¢€ WX To, T T)+&” WX, To, LT+ 8° WX, To, T ),
A& )=¢ (X To, B T)+&” Oo(x To, TTo)+€° Balx, To, T To) 9)
where ¢ is a small book-keeping parameter artificially inserted into the equations. This parameter can
be taken as 1 at the end upon keeping in mind, however, that deflections are small. Therefore, we
investigated a weak nonlinear system. To=t is the fast time scale, Ti=¢ t and, T.=¢t are the slow time
scales in MMS.

Now consider only the primary resonance case and hence, the forcing and damping terms are

ordered as R=¢F, fi=¢* 14 so that they counter the effect of the nonlinear terms. Derivatives with
respect to time were written in terms of the T, as follow:

2
§=D0+g D;+&° Dy, %:D§+2 & Dy D, +&% (D?+2 Dy D,), Dh=0/oTh. (10)

3.1. Linear Problem
First order of Perturbation Method could be defined as linear problem. Substituting Egs.(9)-(10) into
Egs.(6)-(7) and separating each order of &, one obtains the followings;

ordere:  yv(W -6 )-Diwu=0, zv(W—6)+6 —DiG=0
Wi, =€, o=0, Wil =, =0, W, =Worl,_, G, =, . A, =,
ZV(\MI_QMX o XY \/\él—gzl)ix:”+05 DOWUL:,]=0 (11)
order €% yv(Wp—6h)-Diw,=2 D, Dy, & +xv(Wo—0o)-D5G=2Dy D, 6
Wil o=, =0, Wedl, =6, , =0, Wi, =Wed,_,, &d,, =, &, =,

xvWh-6a) -~z v(We—02)  +aDfwd  =-2a DyDiwy (12)

X=17

order &%
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Linear problem is governed by Eq.(11) at order &*. For solution to the problem, following forms are
assumed
Wo(XTo T T)=AT,T) € “® V() + AT, T) e “ P Yi(X), Gu(xTo,TuTo)=B(T,T) € ?° d(x)+B(T,T)e" 2 ¢(x) (14)
where overbar denotes the complex conjugate of the expression. an, Y, A represent natural frequency,
eigenfunction and amplitude of the transverse term, respectively. And similarly a», ¢, B represent
frequency, eigenfunction and amplitude of the rotational term, respectively.

Substituting Eq.(14) into Eg.(11), one obtains following equations which satisfies the mode
shapes:
7V {Aeiw_LTo Y"B gl d}_i_af Ag @To Y,=0, yv {AeiwlTo Y'-B gl ¢}+a)§ BT #+B g ¢'rr=0
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yv(Ae@TY_Bel=n ¢1)|X:”—;(v(Aei"’lT° Y,-Be'=m ¢2)|X:’7—aaf AdPy) =0 (15)

Complex conjugates of the mode shapes are the same for both transverse and rotational terms. Thus,
there is no need to write the complex conjugate equations (cc).
3.2. Non-Linear Problem

Adding the additive of the other orders according to the first order gives us non-linear
problem. In order to propose a solution at order &, D:wi1=0 and D16:=0 must be done. Thus, the form
of differential equations and its boundary and continuous conditions at order & are same of order &.
Also, this means A=A(T2), B=B(T.). Thanks to perturbation method, order ¢* was neglected and
according to Eq.(12), following equations at order &* were obtained
2 v (Wh —04 }-Dw,=—F cos(Q )
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Solution to Eq.(16) at order & can be written as;
WX To.T)=¥(x To) € “O+W(x, T)+cc, BaxToT)=a(xT,)e 20 +0(x,T,)+cc, (17)

where ¥ and ¢ are the functions for the secular terms, W and @ are the functions for the non-secular
terms and cc denotes complex conjugate of the preceding terms.

Taking excitation frequency as Q=m+&° o which in o is defined detuning parameter of order O(1),
inserting expressions (17) into Eq.(16) and considering only the terms producing secularities, one has
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3.3. Using Symplectic Method

According to Symplectic Method, Eq.(15) can be converted into following form

Ae@Py=peaT 7z B 20 g=Be =Y,
2viAe™™ Zi_Be 2T Hij+af A€ T Y,=0, yv{Ae " Z—B e gl+Be 2" Hi+f B ".4=0  (19)
Eq.(19) gives the following matrix form of the problem.
A 0 -1 0 [ Ae=Ty ) [0
0 A 0 -1 (|Be“0g| |0
ot 0 yvA —yv|AeaTz [ |0
0 (xv+ad) zv 2 ||BE“=0n) [0

(20)

Expressing Eq.(20) in the matrix form as aa—:sz X and choosing form X=e** for the solution gives

us
oX
x4 (21)

where X(x) is the corresponding eigenvector and A is the eigenvalue. From eigenvalue problem at
Eq.(20), there are four eigenvalues. Thus, solution of the linear problem can be written as follows;
Yi(X)=Cy €% +Co €2 4G €%+, d(X)=dy " +dip €2 +dg €8+, e (22)
A solvability conditions must be satisfied for the non-homogenous equation in order to have a
solution where the homogenous equation has a nontrivial solution [45,46]. For homogeneous problem,
if the solution at order &* is separated as secular and non-secular terms and the solvability condition is
applied in Eq.(18) for eliminating secular terms, Eq.(18) can be converted to new symplectic form as
follows:
el _galo g_q e @y g2, [;(V,&'+aa_ ‘P] ato_ oy e 2=,
[xv Ble “T°+[yi'+(—lv+a)§) (A] g2P—Q
\Pllx:ozyllxd)zo 1 \P2|X;1=7/2|X;1=0 1 \Pllx:n:\lex:q 1 (Alx:nzgozlx:r; 1 7/1|x:17:7/2|x:77 !
xv {ﬂl ei“’lT"—gqei“’zTOHX:”—;( v {ﬂz e _pé ’”ZTO}L:U—a af €W =0 (23)

X=n
If one invokes the solvability procedures given in Nayfeh and Mook[45] to these equations, the
following trial functions can be obtained;

w=yv([Be=2®g-Ae2™Y), u,=—Be 2" f—yv Ae2TY,, =AY, U,=Be“" ¢

U=y v (BE P h—A " Y;), Us=—Be " F—yv Ae"Y,, u=Ae""Y,, u=Be'”" g (24)
Then, the trial functions can be used for non-homogeneous problem. After necessary calculations, one
obtains the following equations;

626 | Vol. 6, Issue 2, pp. 620-633



International Journal of Advances in Engineering & Technology, May 2013.
OIJAET ISSN: 2231-1963

2iw BD,B a+é B°AA {{—@'2 A \72’} Yl +{]7 (@#? \71)/ Y, dx+} (# Vz’)' Y, dx}# {T a4 ¢1) ¢1dx+j \AA ¢2)' # dxH:O
0

n 0 n
. _ no_ 1
2icoaomAD,A+2i o 1 AZ—% Afeoi A A H{j Y'Y dx+ [ Y;Y; dx} {Yl’—Y2'}|X_,7}

{j Y/ dx+J' dx} AR } {j A dx+j Y. Y, dxHj Y/ 1o|x+j Y;'Y, dx}

n n
+2. {

}ledx+j YZdx=1, f:j FlYldx+f RY,dx, 14 =, =, d:f * dx+j &fdx,m=1+aY12|X:’7. (25)
0 n 0 0 7

[\)II—‘

Nl -

O —3

Yfz dx+_|. Yz’2 dx} {} Y_1”Y1 dX+_[ Y_Z"Yz dx}:|+% B B A? [2{_51/ ¢l/ Yl,""az/ ¢£ Y2/}|X:’7 Yllxz,,

n

@HY) v dX+I @4V Y, dx} {j (2 &) qadx+j (2 %) & dxH:

O —3

n
Thus, after simplifications on terms having (*) are described as follow for numerical analysis,
Ae—lwlTo Aela)lTo AA — Aei o To AeiaqTo A2e2iw1To _

¢¢ Be—l(ozTo Beleo ¢¢ ¢ _BeiarzTo BeiarzT():BZEZingo (26)
Eq.(25) can be written as follows;
2iam D2A+2iaa_,uA—% f e‘“2+7xA2A1+A§B%Az=O, AA B% As+2i @, D,B d=0 (27)

Simplification yields following formation;

1 f eio-Tz

. L 1 — _ R
2|cqu+2|cq,uA+(Al+;AZJAN:E ) AAB%A3+2ia)ZBd:O

A1:*|: {J‘ Yl Yl dX+J. Y2 Y2 dX} {Y1 Yz {I Yl’z dX+J. YZ’Z dx} {Yl Yz}l :|Y1|x—77

n

—{j Y'Yy dx+[ E’Y;dx}{j Y,V dx+ j Y'Y, dx} {j Y/ dx+ j dxHj Y1, dx+ j Y,'Y, dx}

n n

Ao= 2{@ & i+ d @Yz}‘ Yil, ,7+2{j (mg )Yldx+j( @Yz)dex} {j (er )deq 6('2 ),,52 dx}

A=t 2 g2 Y2}| Yil,. +{j ) Yldx+j @V dex}+2 {j v @) ¢1dx+J' s 4 )@dx} (28)

Complex amplitude A and B can be written ]ln terms of real amplitudes a and b, and phases ¢1 and ¢
AT)=3 ) €7, B(T)= biT;) &7 (29)
Substituting Eq.(29) into Eq.(28), and separating real and imaginary parts, following amplitude-phase
modulation equations can be finally obtained;
@Mma+a u az% fsinz, —am a(a—r')+%(A1+% Azj a3:%1 f cosz, @ d b=0, —w, d b g'2+% a’b % A;=0 (30)

where 7 is defined as
T:GTz—gl (31)
IV. NUMERICAL RESULTS

4.1 Solutions to the Linear Problem; Natural Frequencies

Table 1 First five natural frequencies in transversal directions for different mass locations and mass ratios.

n=0.01 n=1.0

v |a | 7| (@) | (@), | (@) (a0), ()5 (@) | (@), | (@) | (@), | (&)

0.1 | 8.5444 | 254252 | 42.4182 | 59.4685 | 77.8985 | 2.9868 | 6.1949 | 9.3400 | 12.4650 | 15.5911
0.1 | 02| 83353 | 24.2319 | 42.6038 | 63.2669 | 83.6472 | 2.9796 | 6.1826 | 9.3298 | 12.5035 | 15.6752
0.3 | 8.1005 | 24.4467 | 45.3470 | 62.4807 | 77.2918 | 2.9706 | 6.1827 | 9.3662 | 12.5031 | 15.5945
0.4 | 7.9297 | 25.6206 | 44.2219 | 60.2674 | 83.6472 | 2.9636 | 6.1950 | 9.3549 | 12.4682 | 15.6753
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Figure 2. Natural frequency - frequency ratio for three modes of the beam.

In numerical analysis, according to eigenvalue problem solutions (¥A.i, ¥ ) can be rewritten in the
following form:
Yi(X)=Ciy COS(AX)+Ciz SiN(AX)+C5 cosh(goX)+C, sinh(goX) ,

#(X)=dy cos(Ax)+d;; SiN(AxX)-+di3 cosh(gox)+dis Sinh(goXx) (32)
Inserting these forms into Eq.(20), one can obtain the following solutions:
Y;(X)=cy cosh(Z X)+G;, Sinh(A.X)+Ci3 CoS(goX)+Giy SiN(goX)

ioTo 2 2 2 2 2 2 2 2

#(x)= szm .{cn {_Z ; Z‘ {wl} sin(A X)+Ci {_)(_;77:/;:@} cos(R x)+ci3% sinh(g X)+Cis {ZV#;@} cosh(g x)} (33)
In our study for natural frequencies, assumption of @, =na has been done so that n can be defined as
a ratio of rotational frequency to transverse frequency. After obtaining eigenvalues from Eq.(20) and
using solution function at Eq.(32), transverse natural frequencies(w1) can be calculated via conditions
at Eqg.(15). In numerical studies, material properties were considered as constant due to slenderness
ratio(v), and shear/flexural rigidity ratio(y) or Poisson’s ratio(v) were investigated in detail.
Throughout numerical calculations, Poisson’s ratio and shear correction coefficient are assumed 0.30
and k=5/6, respectively.
Using the slenderness ratio(v=10000), mass ratio(a=1), mass location (#=0.5), one can plot w1 versus
n graphs for first three modes as seen in Fig.2. At this figure, increasing frequency ratio decreases
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linear natural frequencies. At 0<n<0.5, this decreasing is the fastest for the second mode’s natural
frequency.

10

10

=61

! L ! L G L I ! L
00 02 o4 L, 06 0.8 ¥y 0 ¥ 0.2 . 0.3 0.4 a5

Figure 3. Natural transverse frequencies via frequency Figure 4. Natural transverse frequencies via mass
ratio for different mass locations, a=1, v =10000. location for different mass ratios,n=0.1, v =100.

In Fig.3, change of transverse frequency versus frequency ratio has been investigated for first mode
vibration of the beam. If the mass is kept near the ends of the beam, high natural frequencies can be
obtained. Increasing the frequency ratio decreases natural frequencies. Selecting slenderness ratio as
100, change of transverse frequency versus mass location has been investigated for first mode
vibration of the beam in Fig. 4. Increasing the mass magnitude decreases natural frequencies.

The first five natural frequencies are given for n=0.01 and n=1.00 at Table 1. From these values,
increasing mass location and mass ratio resulted in decreasing natural frequencies only for the first
mode. Other modes’ natural frequencies are very complex. If one makes comparison between both
tables, lower frequency ratios having higher natural frequencies can be seen. This means that energy
of the system is transferred to rotation of the beam. This means that energy is divided equally between
rotational and transverse vibration modes in case of n=1.

4.1 Solutions to the Non-Linear Problem; Force-response curves

16

y=100 1
247 v=10000 |
12} 0.8t
1 L
0.6}
a, 0.8} a,
0.6t 0.4}
0.4}
0.2}
0.2t
s 0 0.5 1 15 2 %
a
Figure 5. Force-response curves for different, Figure 6. Force-response curves for different,
slenderness ratios n=1.0, #=0.5, a=1. frequency ratio #=0.5, =0.1, v=10000.

For steady state in Egs.(30), amplitudes vanish with increasing time. This is in brief;

a=0&b=0 — a=a, & b=h, (Constant) (34)
Note that ag and bo are the steady state real amplitudes of the response.
Using Eq.(30), one obtains following equations;

o [ aO:% f sinr, —o M a (G—z")+é (Aﬁ-%.Agj aS:% f cost (35)

After some manipulations for steady state case, we obtain following detuning parameter;
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I D T T R T
o=Nat (mj -4, N—g A1"‘;A2 am’ 4 me f—ﬁ (36)

Here, X has been described as frequency correction coefficient to linear frequency.

13

13

2 e 1 2z 3 4 4
[

Figure 7. Force-response curves for different Figure 8. Force-response curves for different

mass ratio,n=1, #=0.3, v=100. mass ratio,n=0.1, #=0.5, v=10000.

Using Eq.(36), frequency—response graphs were drawn at Figs.5-8. f =1 and 7 =0.1 were taken at
these graphs. Frequency—response graphs via different slenderness ratios were given in Fig.5 for
n=1.0, #=0.5, and a=1. Graph shows that decreasing v increases hardening type behavior. Maximum
amplitude value increases while vincreases and jump region gets greater.

Frequency—response graphs via different frequency ratios were given in Fig.6 for a=0.1, #=0.5,
v=10000. Graph shows that increasing frequency ratio (n) increases hardening type behavior.
Maximum amplitude value increases while n increases and jump region gets greater. Another thing
seen from this graph is the hardening behavior is less in case of lower frequency ratio.
Frequency-response graphs via different concentrated mass magnitudes were given in Figs. 7-8. In
Fig.7, graph shows that increasing mass ratio decreases hardening type behavior. Maximum amplitude
value increases while the mass ratio increases at a certain location. In Fig.8, graph shows increasing
mass ratio makes jump region wider.

1

=05 =03

0.8t

0.2t

[

-2 -1 0 { 2 3 4

22
G o
Figure 9. Force-response curves for different Figure 10. Force-response curves for different
mass locations, n=1, 0=0.1, v=100. mass locations, n=1, =1, v=10000.
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Figure 11. Force-response curves for different mass locations, n=0.1, a=1, v=10000.

Frequency—response graphs via different concentrated mass locations were given in Figures. 9-11. In
Fig. 9, graph shows moving mass location from end points to the middle point of the beam causes
hardening type behavior. For different frequency ratio (n=1) in Fig. 10, moving mass location makes
less hardening behavior and small rising in maximum amplitude values. Changing some control
parameters, our results become compatible with the studies of Pakdemirli et.al [40] and Ozkaya et.al
[38] which are based on Euler type beam. In Fig. 11, maximum amplitude value increases while
concentrated mass gets closer to the midpoint and jump region gets wider.

V. CONCLUSIONS

In this study, nonlinear vibrations were investigated for the Timoshenko type beams carrying
concentrated mass. For that purpose, equation of motions has been derived by using by using
Hamilton Principle. To solve this coupled differential equations analytically Method of Multiple
Scales (a perturbation method) has been used. The problem has been defined with solution orders;
linear problem and non-linear problem. Solutions of the linear problem correspond to the natural
frequencies. Assuming a ratio between rotational mode frequency and transversal mode frequency and
defining this ratio as the frequency ratio, natural frequencies has been obtained by using different
control parameters: location and magnitude of the concentrated mass, slenderness and frequency ratio.
Natural frequencies decrease with increasing frequency ratio (n). Increasing frequency ratio resulted
in sharing energy of the system between rotational and transversal modes. Holding mass up close to
middle location of the beam would result in decreasing natural frequencies. And natural frequencies
decrease with increasing the mass magnitude. Solutions of the non-linear problem correspond to
forced vibration results, and were obtained by means frequency response curves in the case of steady-
state of the system. Replacing concentrated mass to middle point of the beam instead of end points,
would result in expanding multi-valued region, but would not change maximum amplitudes of
vibrations for Timoshenko type beams. Using different slenderness and frequency ratio, one can
obtain Euler-Bernoulli results; multi-valued region doesn’t expand, maximum amplitudes of
vibrations become larger. For low magnitude of the mass multi-valued regions are wide, but
maximum amplitudes of vibrations are small, but for great magnitude of the mass the multi-valued
regions are narrow, but maximum amplitudes of vibrations are larger. Frequency ratio causes
hardening type behavior on the system. Thus, multi-valued region expands, maximum amplitudes of
vibrations become larger as these parameters increase. When compared with Euler Bernoulli type
beams generally speaking, Timoshenko type beams have hardening behavior, wide multi valued
regions and larger maximum amplitudes of vibrations. As a future work nonlinear vibrations of
Timoshenko type moving continua with any attachments (spring, mass) could be analyzed.

This study could be seen as a key stone to study axially moving Timoshenko beams, because problem
using Euler-Bernoulli beam theory has been investigated by Sarigiil and Boyaci [37]. In case of
carrying multiple concentrated masses, vibrations of plate using Timoshenko beam theory could be
investigated.

631 | Vol. 6, Issue 2, pp. 620-633



International Journal of Advances in Engineering & Technology, May 2013.
OIJAET ISSN: 2231-1963

REFERENCES

[1] Timoshenko, S. P.:On the correction factor for shear of the differential equation for transverse vibrations of
bars of uniform cross-section. Philosophical Mag., p.744, (1921)

[2] Timoshenko, S. P.:On the transverse vibrations of bars of uniform cross-section. Philosophical Mag., p.125,
(1922)

[3] Mei C., Karpenko Y., Moody S., Allen D.: Analytical approach to free and forced vibrations of axially
loaded cracked Timoshenko beams. J.Sound Vib. 291, 1041-1060, (2006)

[4] Loya J.A., Rubio L., Fernandez-Saez J.:Natural frequencies for bending vibrations of Timoshenko cracked
beams. J.Sound Vib. 290,640-653, (2006)

[5] Banarjee J.R.:Dynamic stiffness formulation and free vibration analysis of centrifugally stiffened
Timoshenko beams. J.Sound Vib. 247(1), 97-115, (2001)

[6] Ruge P., Birk C.: A comparison of infinite Timoshenko and Euler—Bernoulli beam models on Winkler
foundation in the frequency- and time-domain. J.Sound Vib. 304, 932-947, (2007)

[7] Van Rensburg N.F.J., Van der Merwe A.J.: Natural frequencies and modes of a Timoshenko beam. Wave
Mot. 44, 58-69, (2006)

[8] Hijmissen J.W., van Horssen W.T.: On transverse vibrations of a vertical Timoshenko beam. J.Sound Vib.
314, 161-179, (2008)

[9] Majkut L.:Free and forced vibrations of Timoshenko beams described by single difference equation.
J.Theo.and App. Mech. 47(1), 193-210, (2009)

[10] Gunda J. B., Gupta R.K., Janardhan G.R., G. Rao V.: Large amplitude free vibration analysis of
Timoshenko beams using a relatively simple finite element formulation. Int. J. Mech. Sci. 52, 1597-1604,
(2010)

[11] Shahba A., Attarnejad R., Marvi M. T., Hajilar S.: Free vibration and stability analysis of axially
functionally graded tapered Timoshenko beams with classical and non-classical boundary conditions. Comp.
Part B: Eng.(2011). doi:10.1016/j.compositesh.2011.01.017

[12] Rossi R.E., Laura P.A.A., Avalos D.R., Larrondo H.: Free vibrations of Timoshenko beams carrying
elastically mounted concentrated masses. J.Sound Vib. 165(2), 209-223, (1993)

[13] Geist B., Mclaughlin J. R.: Double Eigenvalues for the Uniform Timoshenko Beam. Appl. Math. Lett.
10(3), 129-134, (1997)

[14] Esmailzadeh E. and Ohadi A.R.: Vibration and stability analysis of non-uniform Timoshenko beams under
axial and distributed tangential loads, J.Sound Vib. 236(3), 443-456, (2000)

[15] Zhong H. , Guo Q.:Nonlinear Vibration Analysis of Timoshenko Beams Using the Differential Quadrature
Method. Non Dyn.32, 223-234, (2003)

[16] Grant D.A.: The effect of rotary inertia and shear deformation on the frequency and normal mode equations
of uniform beams carrying a concentrated mass. J.Sound Vib. 57(3), 357-365, (1978)

[17] Abramovich H. and Hamburger O.: Vibration of cantilever Timoshenko beam with a tip mass. J.Sound Vib.
148(1), 162-170, (1991)

[18] Abramovich H. and Hamburger O.: Vibration of a uniform cantilever Timoshenko beam with translational
and rotational springs and with a tip mass. J.Sound Vib. 154(1), 67-80, (1992)

[19] Chan K.T. and Wang X.Q.: Free vibration of a Timoshenko beam partially loaded with distributed mass.
J.Sound Vib. 206(3), 242-258, (1997)

[20] Cha P.D. and Pierre C.: Free vibrations of uniform Timoshenko beams with lumped attachments. J.Sound
Vib. 211(2), 162-165, (1998)

[21] Chang C.H.: Free vibration of a simply supported beam carrying a rigid mass at the middle. J.Sound Vib.
237(4), 733-744, (2000)

[22] Lin H.-Y.: On the natural frequencies and mode shapes of a multispan Timoshenko beam carrying a
number of various concentrated elements. J.Sound Vib. 319, 593-605, (2009)

[23] Posiadala B.: Free vibrations of uniform Timoshenko beams with attachments. J.Sound Vib. 204(2), 359-
369, (1997)

[24] Wu J.-S., Chen D.-W: Free vibration analysis of a Timoshenko beam carrying multiple spring-mass
systems by using the numerical assembly technique. Int. J. Num. Met. Eng.50, 1039-1058, (2001)

[25] Lin H.Y.,Tsai Y.C.:Free vibration analysis of a uniform multi-span beam carrying multiple spring—mass
systems. J.Sound Vib.302,442-456, (2007)

[26] Yesilce Y., Demirdag O., Catal S.: Free vibrations of a multi-span Timoshenko beam carrying multiple
spring-mass systems. Sadhana, 33(4), 385-401, (2008)

[27] Yesilce Y., Demirdag O.: Effect of axial force on free vibration of Timoshenko multi-span beam carrying
multiple spring-mass systems. Int. J. Mech. Sci.50, 995-1003, (2008)

[28] Li B., Tang Y.Q. and Chen L.Q.: Nonlinear free transverse vibrations of axially moving Timoshenko
beams with two free ends. Science China Tech.Sci.54(8), 1966-1976, (2011)

632 | Vol. 6, Issue 2, pp. 620-633



International Journal of Advances in Engineering & Technology, May 2013.
OIJAET ISSN: 2231-1963

[29] Wu J.S., Chen D.W.: Dynamic analysis of a uniform cantilever beam carrying a number of elastically
mounted point masses with dampers, J. Sound Vib. 229(3), 549-578 (2000)

[30] Maiz S., Bambilla D.V., Rossita C. A., Laura P.A.A.: Transverse vibration of Bernoulli-Euler beams
carrying point masses and taking into account their rotatory inertia: Exact solution, J. Sound Vib. 303, 895-908,
(2007)

[31] Ghayesh M.H., Kazemirad S., Reid T.: Nonlinear vibrations and stability of parametrically exited systems
with cubic nonlinearities and internal boundary conditions: A general solution procedure. Appl. Math. Modell.
(in press), doi:10.1016/j.apm.2011.09.084

[32] Ghayesh M. H., Kazemirad S., Darabi M.A.: A general solution procedure for vibrations of systems with
cubic nonlinearities and nonlinear/time-dependent internal boundary conditions. J.Sound Vib. 330, 5382-5400,
(2011)

[33] Lim C.W., Cui S., Yao W.A.: On new symplectic elasticity approach for exact bending solutions of
rectangular thin plates with two opposite sides simply supported. Int. J. Solids Struct. 44, 5396-5411, (2007)
[34] Lim C.W., Yao W.A., Cui S., Benchmarks of analytical symplectic solutions for bending of corner-
supported rectangular thin plates. The IES Journal Part A. 1, 106-115, (2008)

[35] Zou G.: An exact symplectic geometry solution for the static and dynamic analysis of Reissner plates.
Comput. Method Appl. Mech. Eng. 156, 171-178 , (1998)

[36] Li R., Zhong Y.: On new symplectic approach for exact free vibration solutions of moderately thick
rectangular plates with two opposite edges simply supported. Int.J. Eng. and App.Sci. 1(3), 13-28, (2009)

[37] Sarigiil M. and Boyac1 H.: Primary Resonance of Beams Carrying a Concentrated Mass. 2nd Computing in
Science and Engineering, Kusadasi/Aydin, TURKEY, (2011)

[38] Ozkaya E., Pakdemirli M., and Oz H.R.: Non-linear vibrations of a beam-mass system under different
boundary conditions. J.Sound Vib. 199(4), 679-696, (1997)

[39] Ozkaya E.: Non-linear transverse vibrations of simply supported beam carrying concentrated masses.
J.Sound Vib. 257(3), 413-424, (2002)

[40] Pakdemirli M., Nayfeh A.H.:Nonlinear vibrations of a beam-spring-mass system. Transactions of the
ASME\ J. Vib. and Acu. 166, 433-438, (1994)

[41] Yesilce Y.: Free and forced vibrations of an axially-loaded Timoshenko multi-span beam carrying a
number of various concentrated elements, Shock and Vibration, 19(4), 735-752, (2012)

[42] Mei C.: Studying the effects of lumped end mass on vibrations of a Timoshenko beam using a wave-based
approach, Journal of Vibration and Control, 18(5), 733-742, (2012)

[43] dos Santos J.V.A., Reddy J.N.: Vibration of Timoshenko beams using non-classical elasticity theories,
Shock and Vibration,16(3), 251-216, (2012)

[44] Stojanovi¢ V., Kozi¢ P.: Forced transverse vibration of Rayleigh and Timoshenko double-beam system
with effect of compressive axial load, International Journal of Mechanical Sciences, 60(1), 59-71, (2012).

[45] Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations, Willey, New-York, (1979)

[46] Nayfeh A.H.: Introduction to Perturbation Techniques, Willey, New-York, (1981)

AUTHORS BIOGRAPHIES

BOYACI, Hakan, Ph.D. He received B.Sc. in Mechanical Engineering from Bogazici
University, Istanbul, Turkey at 1990, and M.Sc. in Nuclear Engineering from Istanbul Technic

University, Istanbul, Turkey at 1994. He received Ph.D. in Mechanical Engineering from % + i
Celal Bayar University, Manisa, Turkey at 1998. His main research fields are linear and =
nonlinear vibrations of continuous media, and Perturbation Techniques. He is a Professor and ‘
head of the Mechanical Engineering Department of Celal Bayar University, Manisa, Turkey. ﬁ

SARIGUL, Murat, Ph.D. He received his B.Sc. and M.Sc. at (2004) and (2007), respectively in
Mechanical Engineering from Celal Bayar University, Manisa, Turkey. He earned a PhD in
Mechanical Engineering from the University of Celal Bayar at 2011. For one year Postdoctoral
study in 2012, He has been in Mechanical Engineering Department at University of Maryland
Baltimore County, Baltimore, Maryland, USA. His main research is on vibrations of continuum
media.

633 | Vol. 6, Issue 2, pp. 620-633


http://iospress.metapress.com/content/wwt87265171m6l53/
http://iospress.metapress.com/content/wwt87265171m6l53/
http://iospress.metapress.com/content/103184/?p=d8ef6545b02647a4838b4ed455b0c0ac&pi=0
http://iospress.metapress.com/content/k541735x47t6/?p=d8ef6545b02647a4838b4ed455b0c0ac&pi=0
http://jvc.sagepub.com/search?author1=C+Mei&sortspec=date&submit=Submit
https://iospress.metapress.com/content/103184/?p=8d3d958202594264955ff400c89f1c97&pi=0
http://www.sciencedirect.com/science/journal/00207403

