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ABSTRACT 

This study aimed to explore the use of machine learning algorithms for predicting the Water Quality Index 

(WQI) values. To achieve this, 11 machine learning algorithms were employed: k nearest neighbors, elastinetCV, 

linear support vector machine, support vector machine, multilayer perceptron, decision tree, adaboost, bagging, 

extra trees, gradient boosting, and random forest. The models were statistically evaluated: mean squared error, 

root mean squared error, and mean absolute error, balanced accuracy, precision, recall, f1, and confusion 

matrix. A reduction in the number of independent variables from 9 to 4 was also performed. For this reduction, 

the Spearman correlation technique was used, demonstrating that the most significant variables for predicting 

WQI were: thermotolerant coliforms, biochemical oxygen demand, dissolved oxygen, and total phosphorus. 

Thus, this study showed that WQI can be predicted using machine learning techniques trained with only 4 

independent variables, without significant differences from traditionally determined index values. 

KEYWORDS: Index Water Quality; Machine Learning; Classical Models; Ensemble Models; Prediction.  

I. INTRODUCTION 

Regression techniques are widely used and important in the study of natural phenomena. However, for 

their use, certain prerequisites must be met linearity, homoscedasticity, independence of errors, and 

non-multicollinearity. Conventional prediction modeling methods present significant limitations, with 

dependencies on the sampling and databases used [1]. Additionally, [2] stated that some statistical 

models suffer due to the need for linearity of the regression coefficient when used with nonlinear 

variables, thus affecting the predictive power of the models. 

Modeling water quality becomes challenging due to the number of physical, chemical, and biological 

parameters involved in the study of this substance. Due to its value, there is a need for conservation 

and monitoring. The relevance of water quality monitoring, prediction, and evaluation are 

fundamental for the management of rivers and their resources [1]. Consequently, the impact of its 

degradation is observed in the economic, social, and health fields. The use of regression techniques 

for this purpose is hindered by the aforementioned factors. For this reason, several tools have been 

developed over the years, with the most representative and easily understandable being the Water 

Quality Index. 

The development and improvement of water quality indices began in the mid-1960s. Notable 

researchers in this field include [3], the first to present water quality as a numerical index; [4], who 

presented a map representing the water quality of the river in the Bavaria region in Germany with 

colors; [5, 6], who applied and developed Horton and Ledman's ideas in the first index used by 

government agencies in the United States of America. 
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In the subsequent decades, various quality indices were implemented or modified according to 

application needs. In 1971, [7] developed an index indicating organic pollution in surface waters; [8] 

suggested an index with 5 quality classes for water; [9] introduced an index classifying waters for 

recreational use between values 0 and 1; [10] developed an index using a rank with non-parametric 

variables in its methodology; [11] presented the water quality index for the state of Oregon; [12] 

enhanced the environmental quality index. Many other indices and their applications can be found in 

review works by [13, 14]. 

Machine learning (ML) and artificial intelligence (AI) models offer flexibility that allows better 

adaptation to non-linear data, producing more adjusted predictions when compared to classical 

techniques [15]. In recent years, AI has rapidly developed and been applied in various areas of 

knowledge. Works such as: [14] using AI techniques in the field of education; [16] In the health area; 

[17] in marketing; [18] in Industry 4.0; [19] in the food industry and with [20] in hydrology. 

Within the field of hydrology, the use of AI techniques, especially machine learning algorithms, still 

has plenty of room for development and application. Models with a large number of parameters 

become challenging to solve due to their complexity and non-linearity, requiring significant 

computational power and the application of stochastic methods. The application of ML techniques has 

been solving many of these problems [21]. Many models for predicting WQI are sensitive to the 

dataset used for modeling [22]. Water quality prediction becomes more accurate when using deep 

learning and ML techniques, thanks to their treatment of nonlinear and unstable variables [23]. Thus, 

ML models can achieve great success in predicting hydrological processes quickly, accurately, and 

with easy interpretation [24]. 

In the case of Brazil, particularly in the state of São Paulo, efforts for monitoring water quality have 

been ongoing since 1975. In that year, the Environmental Company of the State of São Paulo 

(CETESB) implemented the surface water quality index. One of the state's most important rivers is 

the Tietê River. According to [25], it holds significance in the food industry, transportation, 

navigation, and electricity generation, significantly impacting the state's economic development. It is 

also highlighted that this river crosses the state with the highest population density and GDP in the 

country, presenting degradation characteristics in line with the economic and urban influence of the 

region it traverses, providing a general view of degradation present in other state rivers. 

The objective of this work was to predict the WQI of the Tietê River using 11 machine learning 

algorithms to analyze and statistically compare their performances, identifying which ones perform 

better and could be used for water quality index prediction. Additionally, it also aimed to reduce the 

number of parameters to obtain an optimized prediction. 

This article was divided into four sections. The first is an introduction to the topic and the problem, 

the second is the methodologies, how the datasets were set up and the main mathematical and data 

manipulation methods used to develop the work, the third is the results obtained in the process and a 

brief comparation with results from other articles found in the bibliography that had as their object the 

water quality index and/or use machine learning techniques in classification and regression and the 

fourth the conclusion of the work. 

II. MATERIALS AND METHODS 

Figure 1, illustrates the stages of the work, starting from data collection conducted in reports available 

on the internet, through training and testing with two assembled datasets, and finally, the phase of 

evaluating the performance of the models using regression and classification metrics. 

 
Figure 1. Overall process of working. 
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2.1. Characterization of the Study Area 

The Tietê River is an intrastate river located in the state of São Paulo, crossing it from East to West 

with a length of 1,100 km, as shown in Figure 2. The river is divided into 6 sub-basins: Tietê/Batalha, 

Lower Tietê, Upper Tietê, Piracicaba, Sorocaba/Middle Tietê, and Tietê/Jacaré. 

 
Figure 2. Tietê River 

2.2. Construction of Datasets 

For the dataset called “tiete”, time series data from 1994 to 2019 for 9 physical, chemical, and 

biological parameters were collected: hydrogen potential (pH), dissolved oxygen (do), biochemical 

oxygen demand (bod), thermotolerant coliforms (tc), total nitrogen (tn), total phosphorus (tp), total 

solids (ts), turbidity (turb), temperature (temp) at the 78 measurement points that are located on the 

Tietê River or the closest points in the flow locations of the tributaries that make up the river basins. 

For the dataset named "sp2019," data from 2019 for all measurement points in all hydrographic basins 

of the state of São Paulo were used, excluding points that are part of the "tiete" dataset. 

The aforementioned data can be accessed through the CETESB link (https://cetesb.sp.gov.br/aguas-

interiores/publicacoes-e-relatorios/), where annual reports on surface water quality (WQI) and other 

indices used by the company are available. 

The WQI used by the company is represented by a value with a range of 0 to 100. It has 5 water 

quality classes: “terrible” ranges from 0 and ≤ 19, represented by the color purple; “bad” ranges from 

> 19 and ≤ 36, marked by the color red; “regular” is classified for values > 36 and ≤ 51, characterized 

by the color yellow; “good” falls between values > 51 and ≤ 79, with the color green; and “excellent” 

for WQI greater than > 79, with the color blue being used. 

Using the data cleaning techniques (handling missing and inconsistent data), the “tiete” dataset totaled 

7101 samples and the “sp2019” dataset obtained 2332 samples. The “tiete” dataset can be obtained at 

the link (https://zenodo.org/records/10357787) [26]. 

2.3. Programs Used, Outlier Detection and Data Transformation 

2.3.1. Programs used 

The simulations were developed using Anaconda Navigator 2.3.2 

(https://anaconda.org/anaconda/anaconda-navigator), Jupyter Notebook 6.4.8 (https://jupyter.org/), 

Python 3.9.12 (https://www.python.org/), Scikit-learn 1.2.2 (https://scikit-

learn.org/stable/index.html#), Yellowbrick 1.5 (https://www.scikit-yb.org/en/latest/index.html), and 

Pandas 2.0.1 (https://pandas.pydata.org/). 
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2.3.2. Outlier detection 

The Isolation Forest algorithm was used for outlier detection, with all hyperparameters kept as 

default. The "tiete" dataset had 7101 samples, reduced to 6545 after applying the technique. The 

dataset was then split into 80/20 for training and testing. The trainset had 5236 samples (80%), and 

the testset had 1309 samples (20%). 

2.3.3. Data transformation 

Normally, when working with machine learning, there is a need to standardize different variables into 

scales. In this case, we choose to use data transformation techniques, with the most common being: 

min-max and z-score. In this work, the Yeo-Johnson transformation technique was used to perform the 

data transformation, as this family of power transformation presents a good response to negative data 

or zeros [27]. 

2.4. Artificial Intelligence Techniques 

2.4.1. Classical machine learning techniques for regression 

The techniques used were: KNN – K Nearest Neighbors, ElastiNetCV, LSVM – Linear Support 

Vector Machine, SVM – Support Vector Machine, MLP – Multilayer Perceptron, DT – Decision Tree. 

The parameters of each technique were kept as default, as the optimization of the hyperparameters did 

not yield relevant results to the study, except for SVM, which in relation to parameter C, which 

indicates a regularization penalty, was modified from value 1 to value 20. For DT, the maximum 

depth parameter (max_depth) was set to 3 to avoid excessive growth leading to overfitting, and 

ccp_alpha, an internal minimal cost-complexity parameter, was changed from 0 to 0.150. Further 

information about the parameters and functionality of the techniques can be obtained by accessing the 

scikit-learn library documentation on the website (https://scikit-

learn.org/stable/modules/classes.html#module-sklearn.linear_model).  

2.4.2. Ensemble machine learning techniques for regression 

The machine learning ensemble techniques were ADA – AdaBoost, BAG – Bagging, ET – Extra trees, 

GDB – Gradient Boosting, and RF – Random Forest. The hyperparameters of the algorithms were 

kept as default. For more information, refer to the scikit-learn library link (https://scikit-

learn.org/stable/modules/classes.html#module-sklearn.linear_model). 

2.5. Evaluation Models 

The metrics used to compare the regressors were: Mean Squared Error (MSE), equation 1, which 

calculates the average between all points and the regression model. 

 𝑀𝑆𝐸 =  
1

𝑛
∑(𝑌𝑟 − 𝑌𝑝)

2
𝑛

𝑖=1

(1) 

The Root Mean Squared Error (RMSE), equation 2, which calculates the square root of the average of 

the errors between the predicted values and the actual values. 

 𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑌𝑟 − 𝑌𝑝)

2
𝑛

𝑖=1

(2) 

The Mean Absolute Error (MAE), equation 3, which calculates the mean absolute error between the 

actual values and the predicted values. 

 𝑀𝐴𝐸 =  
1

𝑛
∑|𝑌𝑟 − 𝑌𝑝|

𝑛

𝑖=1

(3) 
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And the classification metrics were Precision, equation 4, which is defined as the ratio between the 

number of true positives (Tp) and the sum of false positives (Fp) and true positives (Tp). 

 𝑃 =
𝑇𝑝

𝑇𝑝 +  𝐹𝑝

(4) 

Recall, equation 5, is the ratio of true positives (Tp) to the sum of false negatives (Fn) and true 

positives (Tp). 

 𝑅 =
𝑇𝑝

𝑇𝑝 +  𝐹𝑛

(5) 

F1, equation 6, is the harmonic mean between precision and recall. 

 𝐹1 = 2 𝑥 
𝑃 𝑥 𝑅

𝑃 + 𝑅
(6) 

Balanced accuracy, equation 7, is a relationship between sensitivity, rate of true positives (Tp), and 

specificity, rate of true negatives (Tn). The metric has the advantage of not being influenced by 

unbalanced classes [28]. 

 𝐵𝐴 =  
1

2
 (

𝑇𝑝

𝑇𝑝 +  𝐹𝑛
+  

𝑇𝑛

𝑇𝑛 + 𝐹𝑝
) (7) 

III. RESULTS AND DISCUSSION 

3.1. Descriptive Statistics of the Datasets 

Tables 1 and 2 present the statistical summary of the variables for each dataset. The "tiete" dataset was 

treated with outlier removal, while the "sp2019" dataset had no treatment, only the removal of missing 

or inconsistent values. 

Table 1.  Descriptive statistics of the “tiete” dataset without outliers. 

Variable Mean Sd Min Max 

pH 7.170 0.468 4.5 9.6 

do (mg/L) 4.155 2.870 0 16.80 

bod (mg/L) 15.443 20.410 0 210 

tc (NMP/100mL) 655263 1636620 0 25000000 

tn (mg/L) 7.738 7.819 0.130 69.270 

tp (mg/L) 0.606 0.789 0.002 13 

ts (mg/L) 215.20 122.428 1 978 

turb (UNT) 29.086 36.568 0 330 

temp (ºC) 23.019 3.292 13 35 

 

Table 2. Descriptive statistics of the “sp2019” dataset. 

Variable Mean Sd Min Max 

pH 7.106 0.531 3.40 10 

do (mg/L) 6.197 2.272 0.10 17.20 

bod (mg/L) 7.641 18.24 2 332 

tc (NMP/100mL) 371620 2444414 2 8166667 

tn (mg/L) 3.865 6.590 0.360 78.21 

tp (mg/L) 0.371 0.876 0.007 9.21 

ts (mg/L) 149.28 124.53 14.80 1520 

turb (UNT) 31.74 63.14 0 1200 

temp (ºC) 22.95 3.42 11 31.20 

 

3.2. Evaluation of Models Using 9 Variables 

3.2.1. Trainset (overall and cross-validation) 
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Table 3 summarizes the values of the MSE, RMSE, and MAE metrics of the ML algorithms for the 

trainset, as well as their performance when using the 10-fold cross-validation technique. 

Table 3. Performance of ML models for the “tiete” dataset trainset 

 Overall Cross-validation (10 folds) 

Model Mse Rmse Mae Mse Rmse Mae 

KNN 9.084 3.014 2.011 13.939 ± 2.835 3.716 ±0.363 2.503 ± 0.145 

ElasticNet 20.614 4.540 3.483 20.729 ± 2.625 4.544 ± 0.279 3.489 ± 0.071 

LSVM 21.223 4.607 3.416 21.298 ± 2.811 4.606 ± 0.295 3.427 ± 0.082 

SVM 4.819 2.195 0.963 5.847 ± 2.459 2.373 ± 0.464 1.171 ± 0.086 

MLP 5.159 2.271 1.234 6.336 ± 2.467 2.477 ± 0.448 1.368 ± 0.102 

DT 51.054 7.147 5.141 57.616 ± 4.020 7.586 ± 0.264 5.404 ± 0.157 

ADA 39.518 6.286 5.274 39.249 ± 1.621 6.264 ± 0.130 5.204 ± 0.145 

BAG 3.468 1.862 1.238 15.528 ± 2.643 3.927 ± 0.328 2.750 ± 0.103 

ET 1.018 1.009 0.540 6.724 ± 2.582 2.553 ± 0.451 1.432 ± 0.101 

GDB 5.223 2.285 1.444 7.808 ± 2.324 2.767 ± 0.392 1.674 ± 0.077 

RF 38.229 6.183 4.637 39.456 ± 2.347 6.279 ± 0.188 4.708 ± 0.102 

 

The Bagging and Extra Tree algorithms exhibited the two best performances when considering the 

overall metric values. However, the same is not reflected when analyzing these algorithms with cross-

validation techniques. Small values are observed when using the overall MSE metric (3.468 and 

1.018), and values five times higher (15.528 ± 2.643 and 6.724 ± 2.582) after applying cross-

validation for metric calculation. This characteristic reflects an overfitting of the ML techniques to the 

trainset data. 

The SVM algorithm obtained the best absolute values for the metrics both overall and in cross-

validation. However, there is a difference of more than two times between the RMSE and MAE 

values, both overall (2.195 and 0.963) and in cross-validation (2.373 ± 0.464 and 1.171 ± 0.086), 

which could indicate the presence of samples with very high variability in the trainset, thus 

complicating the algorithm's regression process. 

The MLP and GB algorithms demonstrated interesting performances. With small RMSE and MAE 

values and a ratio between them less than twice both for the metrics in general: MLP (2.271 and 

1.234) and GB (2.285 and 1.444) and in the cross-validation: MLP (2.477 ± 0.478 and 1.368 ± 0.102) 

and GB (2.767 ± 0.392 and 1.674 ± 0.077), thus indicating small variances. This result is expected 

when working with real-world data. 

3.2.2. Testset and sp2019 

The final evaluation of ML models using 9 variables occurred in two stages: first, using the testset of 

the "tiete" dataset, and second, using the "sp2019" dataset. Tables 4 and 5 summarize the performance 

of ML algorithms. 

Table 4. Performance of ML models for the “tiete” dataset testset. 

Model Mse Rmse Mae Accuracy Precision Recall F1 

KNN 12.662 3.558 2.403 0.882 0.892 0.892 0.892 

ElasticNet 18.769 4.332 3.380 0.809 0.847 0.833 0.834 

LSVM 19.516 4.418 3.347 0.827 0.849 0.837 0.837 

SVM 5.145 2.268 1.142 0.936 0.941 0.940 0.940 

MLP 5.365 2.316 1.312 0.923 0.931 0.930 0.931 

DT 50.744 7.123 5.239 0.750 0.765 0.788 0.765 

ADA 39.752 6.305 5.267 0.497 0.465 0.633 0.536 

BAG 14.398 3.795 2.732 0.844 0.872 0.869 0.868 

ET 5.750 2.398 1.398 0.921 0.932 0.931 0.932 

GDB 6.875 2.622 1.656 0.906 0.922 0.922 0.921 

RF 35.289 5.940 4.540 0.817 0.826 0.826 0.822 
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Table 5. Performance of ML models for the “sp2019” dataset. 

Model Mse Rmse Mae Accuracy Precision Recall F1 

KNN 23.326 4.830 3.436 0.805 0.862 0.865 0.862 

ElasticNet 19.089 4.369 3.203 0.800 0.868 0.869 0.863 

LSVM 18.990 4.358 3.046 0.819 0.872 0.874 0.869 

SVM 4.809 2.193 1.167 0.902 0.948 0.948 0.948 

MLP 5.529 2.351 1.418 0.902 0.940 0.940 0.940 

DT 68.481 8.275 6.171 0.711 0.763 0.777 0.728 

ADA 48.947 6.996 5.752 0.482 0.636 0.755 0.690 

BAG 18.740 4.329 3.261 0.819 0.888 0.887 0.885 

ET 7.968 2.823 1.796 0.873 0.927 0.926 0.926 

GDB 7.772 2.788 1.832 0.864 0.917 0.917 0.917 

RF 46.337 6.807 5.219 0.797 0.833 0.837 0.834 

 

The GB, MLP, and SVM algorithms demonstrated the best performance on the testset of the "tiete" 

dataset and the "sp2019" dataset. They achieved RMSE values below 3.0 and MAE values below 2.0 

in both datasets. It should also be noted that all algorithms used have RMSE/MAE ratio values below 

2.0. The BAG and ET algorithms presented MSE values compatible with the MSE values in cross-

validation, but still 5 times higher than the overall MSE values. 

Table 6 summarizes the maximum accuracy value of the ML algorithms per water quality class for 

both datasets. 

Table 6. Performance of ML models for the CM technique. 

 Trainset Sp2019 

Model 0 1 2 3 4 0 1 2 3 4 

KNN 197 308 119 413 131 77 163 251 1320 205 

ElasticNet 185 245 125 434 102 87 139 241 1358 201 

LSVM 189 237 125 428 117 87 138 241 1340 231 

SVM 200 327 145 424 134 72 180 340 1361 257 

MLP 196 323 139 427 133 78 181 329 1358 246 

DT 198 285 29 387 132 74 181 14 1305 238 

ADA 0 279 118 432 0 0 144 277 1338 0 

BAG 163 310 122 40 122 75 165 278 1346 203 

ET 198 321 140 431 129 73 169 331 1349 237 

GB 197 326 125 428 131 74 174 305 1350 235 

RF 200 281 86 382 132 76 163 201 1267 244 

Total 211 348 165 446 139 91 204 374 1392 270 

0 – “terrible”, 1 – “bad”, 2 – “regular”, 3 – “good” and 4 – “excellent”. 

Among the top-performing algorithms (SVM, MLP, GB), SVM obtained the highest number of 

correct predictions for 4 water classes (“terrible”, “bad”, “regular” and “excellent”), while GB 

performed better only in the “good” class using the testset. In the validation with the “sp2019” 

dataset, the SVM obtained more correct predictions for the “regular”, “good” and “excellent” classes 

and the MLP got more hits for the “terrible” and “bad” classes. 

3.3. Evaluation of models after variable reduction 

The Spearman correlation technique was employed to assess the relationship between the independent 

variables and the dependent variable. Figure 3 presents the Spearman correlation coefficient between 

the response variable and the independent variables. It was observed that the variables: “tc”, “bod”, 

“tn” and “tp” show a strong negative correlation, while “do” has a strong but positive correlation with 

the response variable “WQI”. And the variables “ph” and “temp” have a very weak positive 

correlation with the “WQI”. 
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Figure 3. Spearman's rank correlation. 

3.3.1. Regressors with: 7 (tc, bod, do, tp, turb, tn, ts), 5 (tc, bod, do, tp, tn), and 4 (tc, bod, do 

and tp) features. 

The performances for the SVM, MLP, and GD models of the MSE, RMSE and MAE metrics are 

summarized in table 7. The metrics values were obtained for regressors with 7 features (excluding 

“ph” and “temp”), with 5 features (excluding “ph”, “temp”, “turb”, “ts”), and with 4 features (“tc”, 

“bod”, “do” and “tp” that have the strongest correlations). 

Table 7. Performance of 7-, 5-, and 4-feature ML models for the trainset. 

Model Mse Rmse Mae Mse Rmse Mae 

SVM7 5.566 2.359 1.181 6.262 ± 1.938 2.475 ± 0.368 1.309 ± 0.068 

SVM5 9.154 3.026 1.676 9.624 ± 2.148 3.086 ± 0.319 1.747 ± 0.083 

SVM4 9.505 3.083 1.735 9.764 ± 2.053 3.110 ± 0.302 1.782 ± 0.085  

MLP7 5.843 2.417 1.411 6.757 ± 2.296 2.568 ± 0.406 1.472 ± 0.064 

MLP5 9.219 3.036 1.860 9.876 ± 2.003 3.129 ± 0.297 1.896 ± 0.066 

MLP4 9.748 3.122 1.946 10.144 ± 1.931 3.172 ± 0.284 1.929 ± 0.087 

GDB7 5.661 2.379 1.512 8.059 ± 2.233 2.815 ± 0.370 1.727 ± 0.068 

GDB5 8.196 2.863 1.862 11.019 ± 1.905 3.308 ± 0.275 2.099 ± 0.066 

GDB4 8.417 2.901 1.877 11.052 ± 1.893 3.314 ± 0.269 2.088 ± 0.073 

*7, 5, and 4 – number of features. 

It is noted that there was an increase in the metric values, but this was expected since, with the 

reduction of variables, the regressors exhibit a decrease in the ability to describe the phenomenon. 

Despite the increase in value, it was very small and not significant, still obtaining an acceptable 

regression with 4 variables. 

The metrics calculated for the testset and sp2019 are summarized in tables 8 and 9. 

Table 8. Performance of 7-, 5-, and 4-feature ML models for the testset. 

Model Mse Rmse Mae Accuracy Precision Recall F1 

SVM7 5.415 2.327 1.255 0.926 0.932 0.932 0.932 

SVM5 8.386 2.896 1.749 0.911 0.918 0.916 0.916 

SVM4 8.647 2.941 1.783 0.911 0.919 0.917 0.917 

MLP7 5.919 2.433 1.460 0.917 0.929 0.929 0.929 

MLP5 8.668 2.944 1.909 0.891 0.907 0.906 0.906 

MLP4 9.070 3.012 2.011 0.888 0.907 0.905 0.906 

GDB7 7.140 2.672 1.711 0.907 0.922 0.923 0.922 

GDB5 9.665 3.109 2.049 0.890 0.904 0.904 0.904 

GDB4 9.730 3.119 2.071 0.891 0.905 0.905 0.905 

*7, 5, and 4 – number of features 
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Table 9. Performance of 7-, 5-, and 4-feature ML models for the sp2019. 

Model Mse Rmse Mae Accuracy Precision Recall F1 

SVM7 6.132 2.476 1.429 0.904 0.943 0.943 0.942 

SVM5 10.490 3.239 2.153 0.886 0.916 0.916 0.916 

SVM4 10.833 3.291 2.215 0.877 0.912 0.913 0.912 

MLP7 7.413 2.723 1.875 0.878 0.924 0.924 0.924 

MLP5 11.910 3.451 2.50 0.869 0.910 0.909 0.909 

MLP4 12.071 3.474 2.602 0.856 0.902 0.901 0.901 

GDB7 8.838 2.973 2.018 0.863 0.914 0.914 0.914 

GDB5 13.239 3.638 2.554 0.844 0.897 0.897 0.896 

GDB4 13.799 3.715 2.601 0.846 0.896 0.897 0.895 

*7, 5, and 4 – number of features. 

Table 10 shows the accuracy per water quality class for the models developed. 

Table 10. CM performance of 7-, 5-, and 4-feature models. 

 Testset Sp2019 

Model 0 1 2 3 4 0 1 2 3 4 

SVM7 200 321 139 426 134 75 182 338 1351 251 

SVM5 195 317 135 418 134 79 179 296 1329 253 

SVM4 196 318 135 418 133 78 179 291 1333 247 

MLP7 191 321 141 434 129 77 180 324 1350 223 

MLP5 190 321 129 420 126 75 186 292 1331 236 

MLP4 192 321 127 421 124 75 179 293 1326 228 

GDB7 197 324 127 430 130 74 176 305 1344 232 

GDB5 195 317 122 419 130 73 173 277 1332 236 

GDB4 196 314 124 421 129 75 173 275 1334 233 

Total 211 348 165 446 139 91 204 374 1392 270 

0 – “terrible”, 1 – “bad”, 2 – “regular”, 3 – “good” and 4 – “excellent”, *7, 5, and 4 – number of 

features, green (win) and red (draw).  

For the SVM, MLP, and GB models, the accuracy varied similarly. Regarding the classes, there was a 

predominance of the SVM algorithm for the “excellent” class in both datasets. In the testset, the SVM 

algorithm obtained the highest number of correct predictions for each class in 6 instances, the MLP in 

5, the GB in 1, and there were 3 draws. For sp2019, the SVM algorithm achieved the highest number 

of correct predictions 9 times, MLP got 3, GB got 2, and there was 1 draw. 

3.4. Comparing with literature 

Considering the results obtained in the literature in other studies, it is observed that [29] used ML 

algorithms for classification and prediction of water quality index. The two bests were RF and GB, 

with F1 metrics of 0.50 and 0.53 for RF and GB. MAE and RMSE were RF (2.30 and 3.09) and GB 

(1.96 and 2.68), respectively. [21] presented a study on multiple regression, with total dissolved solids 

and electrical conductivity as dependent variables and 8 independent variables. The MAE and RMSE 

metrics of the algorithms were, respectively: ANN (9.56 and 11.76), MLR (8.22 and 8.25), and 

MNLR (6.67 and 12.76). 

Finally, [30], worked with 16 ML algorithms to implement Iran's water quality index. The two bests 

were the hybrid algorithms: bagging-RF with MAE (1.51) and RMSE (2.78), and bagging-RT with 

MAE (1.87), and RMSE (2.71). [22] developed an ecosystem optimized with deep learning for 

classifying and predicting water quality. The RMSE values obtained by the algorithms used in the 

prediction were: ANN (0.7158); LR (2.7129); RF (2.9155); GB (2.6134); and SVM (2.6230). The 

algorithms used to classify the F1 values were: MLP (84.83); KNN (89.33); DT (85.99); and LR 

(87.04). [31] studied the impact of soil cover on groundwater quality. Two algorithms were trained, 

RF and ANN. Accuracy for the RF ranged between 0.81 and 0.787; MAE, 0.343 and 0.334; and 

RMSE, 0.397 and 0.387. As for the ANN algorithm, the variation ranged from 0.60 to 0.775 for 

accuracy, from 0.43 to 0.372 for MAE, and from 0.459 to 0.427 for RMSE. 
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The GB, MLP, and SVM algorithms also had the best performance when observing the classification 

metrics, F1, and balanced accuracy, with values above 0.90 for both metrics in the testset. For the 

sp2019 dataset of the 3 algorithms, only GB obtained a value below 0.90 in the accuracy balanced 

metric. 

It is observed that the results obtained in the datasets (“testset” and “sp2019”) did not show a 

significant variation in values when there was a reduction in variables. Regarding classification 

metrics, they mostly remained close to 0.90, except for balanced accuracy, which approached 0.85 

when the number of variables was reduced. Thus, the reduction in the number of variables did not 

significantly affect the new models obtained. 

Comparing the values obtained in this study (tables 4, 5, 8, and 9) with the values observed in the 

bibliography, it is noted that even with the reduction of variables from 9 to 4, it is still possible to 

predict the water quality index within the standard of metrics obtained in other studies. In this way, 

the SVM, MLP, and GB algorithms can be used as an alternative to predict the WQI of surface waters. 

IV. CONCLUSION 

It is concluded that the best algorithms presented in this study for predicting the water quality index 

were: SVM, MLP, and GB. The three achieved equivalent statistical performance. They showed 

robustness in predicting the WQI, even when subjected to variable reduction, as the difference 

between the metrics was not significant. Therefore, one of these ML algorithms, trained with 4 

variables, can be used, provided they are the ones with the strongest correlations with the response 

variable. Finally, it was found that AI algorithms are useful tools in predicting WQI values, as they are 

robust in interpreting phenomena that deviate from linearity. 
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