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ABSTRACT 

In general, the electromechanical impedance-based SHM method (ISHM) uses a piezoelectric transducer as a 

sensor/actuator to excite/measure the dynamic response of a mechanical structure under investigation to find 

incipient damage. The SHM method requires many samples of impedance signatures to analyse the behaviour of 

the system and draw a diagnostic. This contribution proposes a method to generate new impedance signatures 

as based on a few measured signatures. The signature generator operates through the Monte Carlo method. 

This approach proposes drastically reducing the number of measured samples normally used in the ISHM. This 

reduction can be as large as 93%. For this aim, a case study is proposed using an “I” profile structure with 

four levels of damage. Moreover, 33 impedance signatures for each level of damage were measured. Then, the 

Monte Carlo method was used to generate 400 virtual signatures. Finally, the generated signatures were 

compared with the experimentally acquired ones to measure the error associated with the generated signatures. 

In conclusion, this contribution presents a method that uses the properties of impedance signatures to store 

them and, if necessary, uses these signatures to generate numerical signatures, thus reducing the need to store a 

large amount of data. 

KEYWORDS: Monte Carlo Method, Electromechanical Impedance-based SHM Method, Data Record 

Reduction, Structural Health Monitoring, Damage Detection  

I. INTRODUCTION 

The electromechanical impedance-based method aims to identify the existence of incipient damage in 

a structure under investigation. The use of structural health monitoring techniques can prevent many 

of the critical systems from collapsing, thus reducing maintenance costs while ensuring better level of 

system security.  

The lack of maintenance or its insufficient performance can lead to major financial and human life 

losses, thus justifying the application of SHM methods. Furthermore, in the literature we can find 

several events of structural failure that could have been prevented through the application of damage 

detection techniques (the electromechanical impedance-based method is known as a successful SHM 

approach).  

Some incidents of structural failure that could have been avoided by the application of SHM methods 

became notorious in the literature: the accident of flight Aloha Airlines 243, the collapse of I-35W 

Mississippi River Bridge (officially known as Bridge 9340) and the widening of hull steel fractures on 

Liberty’s ships during World War II. Incipient damage monitoring would certainly be very helpful 

both for maintenance and safety issues.  
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The electromechanical impedance method uses a piezoelectric transducer (such as sensor / actuator) to 

both excite and collect the dynamic responses of the structure under investigation. Changes in the 

corresponding dynamic responses can later be quantified by using mathematical and probabilistic 

techniques. Then, the existence, position and severity of damage can be investigated and identified.  

However, SHM techniques currently require large volumes of data for their accuracy, thereby 

increasing storage costs and subsequently the total computational cost.  

In this context, the present contribution aims to present a method for the statistical generation of 

electromechanical impedance signatures, in which the size of stored data can be reduced. The 

proposed sample generator is based on the Monte Carlo method, which enables the impedance 

signatures to be sampled considering a small pre-collected historical database of the structure. The 

numerical samples generated in the present work were subsequently evaluated for their similarity to 

the database used for their construction and the corresponding results demonstrate the efficiency of 

the developed process.  

The validation method applied to this contribution is the one-way ANOVA statistical method, which 

allows for the verification of the variance between two sets, one of them being the test set (generated 

samples) and the other a reference set (experimentally collected samples).  

The purpose of the approach conveyed is to evaluate the possibility of the SHM technique to be 

further implemented in the context of extreme conditions structural monitoring, such as those that are 

faced by autonomous SHM in submerse, space and deep forest environments. In such cases, it is very 

important to have compact systems, including reduced data storage devices.   

1.1. Electromechanical Impedance-Based Method 

The electromechanical impedance-based monitoring method was initially introduced by Liang et al. 

[1] and aims to monitor the variation of the mechanical impedance of a structure under investigation 

as caused by the existence of damage. As it is difficult to measure the mechanical impedance of a 

structure directly, the method uses piezoelectric materials bonded to or incorporated into the structure 

to capture the corresponding electrical impedance.  

Piezoelectric ceramics are dielectric materials, i.e., they generate an electric charge in response to an 

applied mechanical stress. Inversely, an electric field applied to the material will strain it. Thus, the 

direct effect of the piezoelectric material (sensor effect) and the inverse effect (actuator effect) can be 

used simultaneously as a single component.  

From the equation derived by Liang et al. [2], it is possible to find the mechanical impedance 

variation of a structure by measuring the electrical impedance of a piezoelectric transducer 

coupled/incorporated to this same structure. In addition, the electrical impedance variation of a 

transducer coupled to a structure is correlated to the mechanical impedance variation of the structure, 

thus allowing the diagnostics concerning the existence of damage [3, 4].  

Freitas [5] defines damage as an adverse change caused to the structure, which affects its present or 

future performance. In general, a damage can be represented by changes on stiffness, damping and/or 

mass characteristics. Consequently, the incipient appearance of structural damage can be monitored 

and evaluated by using appropriate SHM techniques.  

While experimenting, the system undergoes a series of mechanical vibrations generated by the 

piezoelectric patch (PZT). Simultaneously, the electrical impedance of the system is measured. This 

procedure allows for acquiring a unique impedance signature that reflects the fundamental mechanical 

properties of the system under observation. 

Figure 1 shows the one-dimensional model of the electromechanical coupling as proposed by Liang et 

al. [2]. In this model, the modal parameters such as mass, stiffness and damping of the structure under 

analysis are shown.  
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Figure 1: One-dimensional model of the electromechanical coupling. 

Equation 1 Liang et al. [2] gives the admittance Equation 1 that models the above system, associating 

the electrical impedance of the piezoelectric transducer with the mechanical impedance of the 

structure under study.  

 
(1) 

 

where Y (ω) represents the electrical admittance, which is the reciprocal of impedance. Za(ω) and 

Zs(ω) denote the mechanical impedance of the PZT patch and the structure, respectively. Furthermore, 

the complex Young's modulus of the PZT patch at zero electric field is symbolized by , while the 

piezoelectric coupling constant in the arbitrary x direction at zero stress is denoted as . 

Additionally, δ represents the dielectric constant at zero stress, d signifies the dielectric loss tangent of 

the PZT patch, and a represents the geometric constant of the PZT patch. 

To identify early variations in the structure’s dynamic behaviour, such as damage, employing a low 

wavelength for excitation is necessary, leading to using a high-frequency spectrum [6, 7]. 

Determining the optimal frequency ranges for SHM analysis often involves a trial-and-error 

methodology, although more advanced approaches, including statistical or optimization methods, can 

also be employed [8]. 

After the best frequency range is determined, a damage metric index is usually calculated to quantify 

the influence/existence of the damage. Although in some cases changes on impedance signatures may 

be visually observed, it is appropriate to apply statistical techniques to quantify them, especially for 

characterization purposes (severity and damage location).  

According to the literature, the most used damage metric is the RMSD index, which is calculated by 

Equation 2.  

 

(2) 

 

where M stands for Root-Mean-Square Deviation (a damage metric), Re(Zi,1) represents the measured 

PZT patch under pristine condition in the frequency range i and Re(Zi,2) represents the signal of the 

PZT patch for the unknown condition (for comparison purposes) in the frequency range i.  

In addition, it is noteworthy that the impedance-based structural health monitoring method has been 

successfully applied to several complex structures as described by [1, 2], and then extended by [9, 10, 

11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26]. 

1.2. Monte Carlo Method 

According to Halton [27], the Monte Carlo method is a stochastic technique used for the 

representation of possible solutions (feasible solutions) of a specific problem, which is of statistical 
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nature. Therefore, in the execution of the method one considers the existence of a hypothetical 

population, which uses random number sequences to construct the population samples.  

The method originated from the use of randomness, encompassing repetitive gambling pro cesses as 

performed at Monte Carlo casinos, in Monaco. The first study of the Monte Carlo method was applied 

in 1947 by Jon Von Neuman and Stanislaw Ulam in the Manhattan project during World War II. In 

this project, the researchers proposed a statistical modelling for the simulation of neutron random 

diffusion, which proved to be widely usable in other types of stochastic problems [28].  

Monte Carlo simulations commonly use mathematical functions and probability distributions to 

statistically model solutions of complex problems. These problems, according to their characteristics, 

can be classified either as probabilistic problems (involving the evaluation of complex integrals for 

the estimation of system parameters) or statistical problems (involving the random sampling of 

variables correlated to the system parameters).  

Furthermore, the Monte Carlo method is currently considered to be one of the most important tools 

for solving considerable intractable problems, whose solution through experimental tests becomes 

costly or impracticable. Thus, the application of Monte Carlo simulation enables the reduction of 

instrumentation costs by creating numerical data that represent the phenomenon under study. Figure 2 

illustrates the flowchart of the Monte Carlo method adopted in the present contribution.  

 

Figure 2: Diagram for sampling by Monte Carlo Method. 

According to Figure 2, the variables of the problem need to be identified and their features are to be 

extracted, such as standard deviation (σ), arithmetic mean (µ), and number of samples (n) to be 

generated. Samples are then created as based on a given statistical distribution (commonly the normal 

distribution is chosen).  
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In this way, the present contribution aims to develop an electromechanical impedance signature 

generator for structural health monitoring, thus reducing instrumentation and data storage costs. Thus, 

the goal is to develop a Monte Carlo method that replaces the need for acquiring heavy experimental 

data by numerically calculated signatures as generated from a small set of experimental impedance 

responses. The suggested organization includes four main sections: Introduction, Materials and 

Methods, Discussion and Results, and Conclusions. The Introduction section provides an overview of 

the electromechanical impedance-based SHM method and related work on data reduction techniques. 

Also, this section describes the Monte Carlo method for generating virtual data sets based on a small 

number of experimental measurements. The Materials and Methods section presents a case study to 

demonstrate the effectiveness of the proposed method in detecting damage in a mechanical structure. 

The Discussion and Results section discusses the observed results' implications, limitations, and 

practical considerations. Finally, the Conclusions section produces a summary of the results and their 

impacts for practical use. 

II. MATERIALS AND METHODS 

The following subsections describe the experimental acquisition process of impedance signatures 

together with the characteristics of the specimen and the sensor used and the process of generating 

new simulated impedance signatures based on the density probability functions calculated from the 

mean and standard deviation of each group of 33 signatures in the considered dataset. This involves 

two main steps: sampling and data generation. 

2.1. Experimental Acquisition of Impedance Signatures 

The experimental setup consists of the following devices: an EVAL AD5933-EBZ board [29] and 132 

impedance signatures stemming from an I-shaped profile structure (260x70x100mm) as collected 

from a PZT patch bonded to the structure at a location 10mm from the tip. According to Figure 3, the 

PZT patch used in this experiment has the following geometry: diameter of 20mm and thickness of 

3mm.  

 

Figure 3: I profile with a PZT patch. 

 

The data acquisition was performed by using the EVAL Board connected to a computer through an 

USB port and the AD5933 Evaluation Board Software Rev. B. Figure 4 presents the experimental 

setup and the data acquisition system.  
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Figure 4: Acquisition system used for collecting the impedance signatures. 

In the acquisition system presented in Figure 4, Z represents the connection of the PZT patch to the 

board while the calibration system is depicted by RFB. Similar schemes are used to acquire 

electromechanical impedance signals, as found in [8, 30, 31, 32, 33, 34, 35, 36].  

The tests considered four damage levels that were inserted by adding masses at different locations 

along the structure to simulate the increase of damage severity. Then, 33 signatures were collected for 

each one of the damage levels considered. Figure 5 presents each level of damage and their respective 

displacements.  

 

Figure 5: Levels of damage and geometry. 

2.2. Test-case Implementation 

From the considered dataset, each group of signatures has a mean and a standard deviation that are 

determined from the sample values of the impedance signatures. Thus, for each group of 33 

signatures, the mean and standard deviation of each set of 511 points corresponding to each signature 

are calculated, leading to 511 density probability functions. Based on these probabilistic functions, 

new simulated impedance signatures can be generated.  

In Figure 6, the generation process adopted is shown according to two main steps: sampling and data 

generation. In the sampling stage, the mean values of each frequency point and its corresponding 

dispersion are determined.  
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Figure 6: Sampling process. 

In the data generation step, the real part of the impedance values of the original system are randomly 

sampled from the distributions for each frequency point in order to generate samples of impedance 

signatures which are supposed to be equivalent to those from the experimental procedure. With the 

reconstructed signals, the RMSD damage metric was applied to check for the correspondence between 

the experimental and numerical samples.  

After applying the damage metric, the Lilliefors parametric test was adopted to verify the normality of 

the sets of experimental and numerical samples. With the normality verification performed, it was 

possible to apply the ANOVA (Analysis of Variance) test aiming to identify relevant differences 

between the means of the independent (experimental and numerical) groups. 

III. DISCUSSION AND RESULTS 

Only the real parts of the impedance responses are used in the present approach, as justified by the 

features explained by Moura Júnior, others [17, 37, 38]. For performing the tests, a frequency range of 

27 to 32 kHz was obtained by using the trial-and-error method, searching for the region where the 

highest number of peaks is found. The impedance signatures of each group are represented in Figure 

7. Each signature is illustrated by an average of 33 samples.  
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Figure 7: Means of impedance signatures of each damage group 

As mentioned above, the Lilliefors test was performed for the damage metrics in order to check for 

data normality. Considering a 95% level of confidence, the null hypothesis was not rejected, i.e., there 

is no evidence in the data to conclude that the distribution of the damage metrics is not normal. 

Consequently, the data can be correctly evaluated by the ANOVA test since the statistical 

assumptions were met accordingly.  

RMSD damage metrics were grouped two by two, so that group #1 includes the metrics of the 

signatures generated by the Monte Carlo method and group #2 contains the metrics of the signatures 

experimentally collected by the board AD5933. This procedure was repeated for each of the four 

considered damage levels.  

Then, the one-way ANOVA was used aiming at comparing the mean values of the groups, thus 

highlighting the homogeneity of the generated signals as compared with the signatures collected. The 

corresponding results are shown in Tables 1-4 and Figure 8.  

In Tables 1-4, the SS parameter stands for the sum of the squares, df represents the degrees of 

freedom within the group, between the groups and the total number of degrees of freedom, Ms are the 

average squares, i.e., the value of the F-statistic applied to the groups, and finally Prob > F, which is 

commonly called a p-value. It corresponds to the probability of the F-statistic to assume a value 

greater than the value of the computed test.  

Table 1: ANOVA results for the Baselines group. 

Source SS df Ms F Prob>F 

Groups 0.00013 1 0.00013 0.2 0.6527 

Error 0.08112 131 0.00062 
  Total 0.08124 132 

    

Table 2: ANOVA results for the Damage 1 group. 

Source SS df Ms F Prob>F 

Groups 0.00004 1 0.00004 0.1 0.7544 

Error 0.05968 131 0.00046 
  Total 0.05973 132 
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Table 3: ANOVA results for the Damage 2 group. 

Source SS df Ms F Prob>F 

Groups 0.00004 1 0.00004 0.12 0.7221 

Error 0.04285 131 0.00033 
  Total 0.04289 132 

    

Table 4: ANOVA results for the Damage 3 group. 

Source SS df Ms F Prob>F 

Groups 0.00005 1 0 0.79 0.3763 

Error 0.00806 131 0 
  Total 0.00811 132 

    

Again, it was considered 95% of significance level and it was proposed four new Hypothesis Test, 

one for each damage group (baseline and damage levels) so that H0 (null hypothesis) implies that the 

generated data is not possible to be identified or separated from the experimental data set, i.e., both 

sets are identical. On the other hand, H1 is the hypothesis assumption implying that both experimental 

and simulated data sets are completely different from each other.  

While the first group of four Hypothesis Tests were performed to conclude about the normality of the 

damage metrics of each damage level (statistical assumption to apply the ANOVA Test), the second 

group of four Hypothesis Tests were applied to check for the assumption about the similarity between 

generated and experimental data sets. Once all p-values (P rob > F) in the ANOVAs were 

significantly greater than 0.05, all null hypothesis cannot be rejected, i.e., the ANOVAs ensure that 

the artificial and experimental data sets are statistically the same.  

Concluding, this approach can obtain virtual data sets (electromechanical impedance signatures) 

based on a small amount of experimental measurements. Besides, the present technique does not 

require the storage of large amount of data along the time.  

In descriptive statistics, the boxplot is the box with extreme and quartile diagrams. This is a graphical 

tool used to represent the variation of observed data of a numerical variable through quartiles To show 

the adherence of the data generated with respect to the experimental data, four boxplots, representing 

each damage metric are presented in Figure 8.  

 

Figure 8: Boxplot of each group of RMSD damage metric 
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Figure 8 illustrates the proximity between the groups, demonstrating the randomness nature for the 

generation of samples. Outlier values are identified as individual points (* mark). The spaces between 

the midlines indicate the degree of dispersion of the data. Although there are outliers in the diagrams, 

they are very close to the scale of the diagram, i.e., each box is very thin, thus presenting a high 

proximity between the groups.  

IV. CONCLUSIONS 

The technique presented leads to a reduction on the amount of data required by the impedance-based 

SHM.  It is well known that a large amount of data is necessary to perform statistical tests, to train 

artificial neural networks, and to apply other machine learning and heuristics/models based on historic 

data. 

The case-study provided has shown that the statistical tests led to representative results. The use of 

this technique permitted the reduction of the amount of data by 93\%, since it was necessary to store 

only the mean and the standard deviation for each level of damage for the construction of the Monte 

Carlo generator. In the present case, 132 electromechanical impedance signatures were used, as 

composed of 511 points each signature (a total of 67,452 values). 

Then, this approach proposes to substitute these 132 samples with 511 points, corresponding to a total 

of 67,452 stored values, by an amount of 511 averages and 511 standard deviations for the four 

conditions of damage (baseline and three damage levels), matching 2044 averages and 2044 standard 

deviation values (4088 records). This storage of 4088 data corresponds to 6\% of the initial test 

configuration involving 67,452 records. 

In a real autonomous system for remote applications, this method can reduce the need for the 

associated hardware to permit a high storage capacity as well as the consequent use of memory 

required for heavy processing of decision-making models.  In addition, the analysis procedure is also 

simplified since the system responsible for performing data generation is easily implemented for 

signature reconstruction.  Besides, the proposed procedure does not include outliers, which is positive, 

since the outliers might create model divergence. 
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