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ABSTRACT 

Structural analyses are increasingly embracing complex approaches to better model real-world behaviours. 

Within this context, the current study explores nonlinear analyses specifically focused on planar trusses. The 

research underscores the distinctions and complexities arising from both geometric and material deviations from 

linear behaviours. This work presents an analytical solution for a material nonlinear 2D truss. The main purpose 

of this work is provide a robust and precise analytical solution, which encapsulate the intricate nodal behaviour 

throughout various equilibrium stages. Such solutions cater to a broad spectrum of materials, from those strictly 

adhering to linear elastic behaviours to others demonstrating more intricate non-linear characteristics. A 

comprehensive contrast is drawn between the singular effects of geometric non-linearity and the intertwined 

consequences of both geometric and material non-linearities. This comparative examination shows pronounced 

differences in the predicted structural responses. An integral component of the research was the comparison of 

our analytical outcomes with a sophisticated, finite element-based software. These comparisons validate our 

findings but also position this study as a pivotal reference for future structural analyses. The main conclusion is 

the significance of incorporating non-linear considerations, both geometric and material-based, in any rigorous 

structural analyses, ensuring outcomes that align more congruently with real-world observations. 

KEYWORDS: Geometric Non-linear Analysis, Material Non-linear Analysis, Analytical Solution, Planar Truss 

Structures, Material Behaviour. 

I. INTRODUCTION 

Structural engineering is fundamentally concerned with understanding the behavior of structures under 

varying load conditions. Traditionally, this understanding has relied heavily on linear analyses, which, 

while computationally efficient, might not fully capture the multifaceted behavior exhibited in the real 

world. Such discrepancies are especially evident in structures prone to significant deformations or those 

made of materials with non-linear characteristics. Planar trusses, though seemingly straightforward, can 

manifest these non-linear complexities (Wood and Zienkiewicz [1]). 

As structural engineering continually evolves, there's a growing need for a more intricate approach that 

genuinely addresses non-linear behaviors. This research veers from the traditional linear standpoint, 

zeroing in on non-linear analysis with a particular emphasis on planar trusses. We explore the intricacies 

resulting from both geometric and material deviations. 

With the contemporary emphasis on the precision and reliability of structural predictions, it's vital to 

enhance our analytical methodologies to mirror real-world scenarios more accurately. This paper 

responds to that imperative. It seeks to offer a robust analytical solution, capturing the nuanced behavior 

throughout different equilibrium stages in truss structures. These stages span from simple linear 

elasticity to the more complex non-linear scenarios (Yang and Leu [2]). 

Linear analysis, due to its computational simplicity, has been a cornerstone in academia for gauging 

displacements, rotations, and stresses within structures. However, the distinction lies in Geometric Non-

linearity (GNL), where the equilibrium conditions shift based on the structure's altered configuration 

post partial load application. In turn, Material Non-linearity (MNL) is a phenomenon where materials 

deviate from linear behavior, such as the predictions of Hooke's Law, under certain load thresholds. 
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Notably, as Lacerda [3] underscores, various materials demonstrate non-linear behaviors ranging from 

plasticity to viscoelasticity and creep. 

Junior [4] elaborates that non-linear structural analysis, encapsulating the equilibrium curve 

determination, can utilize diverse techniques from analytical solutions to iterative methodologies. Greco 

[5] postulates that the truss, given its inherent simplicity, is a prime candidate for studying non-linear 

dynamics. This research proposes an analytical resolution for both geometric and material non-linear 

analysis of a planar truss, positioning this solution as a benchmark for the comparison of numerical 

approaches. 

Subsequent sections will immerse readers in the intricate world of non-linear behaviors, seamlessly 

blending theoretical constructs with numerical comparison, emphasizing the pivotal role of 

acknowledging both geometric and material non-linear facets in contemporary structural engineering. 

The following sections will immerse readers in the complex realm of non-linear behaviors, seamlessly 

integrating theoretical concepts with numerical comparisons. This will underscore the crucial 

importance of considering both geometric and material non-linear aspects in structural engineering. 

To achieve this, the methodology will address two scenarios. The first scenario involves considering 

geometric non-linearity alongside linear elastic. The second scenario will present a planar truss with 

geometric non-linearity and one of its members exhibiting non-linear material behavior. In both cases, 

equations will be developed to calculate displacements and forces in the members for various load 

levels. Finally, in the results section, horizontal and vertical displacements, as well as member forces, 

will be computed for both scenarios, with a continuous comparison to numerical results obtained using 

the finite element Amaru software (https://github.com/NumSoftware/Amaru.jl/tree/main). 

 

II. RELATED WORKS 

Despite being a very complex topic, the nonlinear analysis of structures attracts various researchers who 

seek to develop work both to find analytical solutions and numerical responses to various engineering 

problems. Following are some works developed in the last six years that address nonlinear analysis in 

flat structures. 

Liu and Lv [6] introduced an equivalent continuum multiscale approach for geometrically nonlinear 

analysis of lattice truss structures. It combines the multiscale finite element method and co-rotational 

approach. The lattice truss unit cell is approximated as a continuum coarse element, and its tangent 

stiffness matrix is derived. This approach captures multiple critical points in the equilibrium path, and 

microscopic information can be obtained efficiently. Numerical examples examine unit cell layout, size, 

and mesh sensitivity, confirming the method's validity and efficiency. 

The paper developed by Rezaiee-Pajand and Naserian [7] introduces an iterative approach for nonlinear 

analysis using triangular shapes derived from load-displacement curves. These shapes represent 

objective functions to minimize, yielding two constraint equations for nonlinear solving. The method 

is applied to geometric nonlinear analyses of shells, frames, and trusses, with a comparison to the 

cylindrical arc-length method to demonstrate its effectiveness. 

Habib and Bidmeshki [8] developed a dual approach for geometrically nonlinear finite element analysis 

of plane truss structures. It employs the Total Lagrangian formulation to account for geometric 

nonlinearity and introduces an objective function to minimize displacement-type constraints. The 

method traces the entire equilibrium path, eliminating errors caused by linearization, and can predict 

pre- and post-buckling behavior and multiple limit points with snap-back. Numerical results 

demonstrate its accuracy and efficiency, validated against theoretical solutions and existing methods in 

the literature. 

The paper developed by Falope et al. [9] examined the equilibrium and stability of a von Mises truss 

under vertical load, using theoretical, numerical, and experimental approaches. The truss is made of 

rubber, allowing for large deformations. The study uses a fully nonlinear finite elasticity model with 

the Mooney-Rivlin law to characterize the rubber's behavior, identified via genetic algorithms. 

Experimental observations confirm snap-through behavior, validating the nonlinear approach's 

accuracy in predicting snap-through and Eulerian buckling, contrasting with linear elasticity method 
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Perônica et al [10] focused on developing a computational code to analyze and compare the mechanical 

behavior of trusses with hyperelastic materials, considering both physical and geometric nonlinearities. 

Various hyperelastic models are considered, and the code's comparison is achieved by comparing it 

with analytical, numerical, and experimental results from scientific papers. 

Fonseca and Gonçalves [11] studied investigates the nonlinear behavior, bifurcations, and instabilities 

of a hyperelastic von Mises truss, aiming to achieve multistable behavior. Unlike previous research 

focused on linear elastic materials, this work considers fully nonlinear elasticity with the incompressible 

Mooney-Rivlin constitutive law. The Newton-Raphson method and continuation techniques are used to 

solve the nonlinear equations, revealing multiple equilibrium paths and stability points. Geometric and 

material parameters, as well as load and imperfections, are analyzed, resulting in coexisting stable and 

unstable solutions. Analytical expressions for snap-through and pitchfork bifurcation loads are derived. 

The findings have implications for engineering applications requiring multistability and large 

deformations. 

III. METHODOLOGY 

The methodology used in this paper is based on the work of Greco [5]. We present the nonlinear 

analyses of a 2-bar truss loaded at node 2 as shown in Fig. 1. 

 

Figure 1.  Undeformed truss of the Von Mises type. 

Initially, before the application of load P, the truss exhibits an undeformed structure with angles 𝛼0 and 

𝛽0. After the concentrated load is applied the bars deform as shown in Figure 2. 

 

Figure 2.  Deformed truss of the Von Mises type. 

Utilizing the equilibrium equations at the central node and considering the sum of horizontal forces to 

be zero, we obtain: 

𝐹1 =
𝑐𝑜𝑠𝛽𝑖

𝑐𝑜𝑠𝛼𝑖
𝐹2       (1) 

 

Applying the equilibrium equation in the vertical dxxxx yields: 
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𝐹1𝑠𝑒𝑛𝛼𝑖 + 𝐹2𝑠𝑒𝑛𝛽𝑖 = 𝑃 

 

 (2) 

Substituting Eq. (1) into (2) we find the axial force in the second bar: 

𝐹2 =
𝑃

𝑐𝑜𝑠𝛽𝑖𝑡𝑎𝑛𝛼𝑖 + 𝑠𝑒𝑛𝛽𝑖
 (3) 

By integrating the kinematics of the problem, we can derive two equations that correlate the 

displacements of bars 1 and 2, respectively: 

𝛿1 =
(𝐿 − 𝑥)

𝑐𝑜𝑠𝛼𝑖
−

𝑎

𝑐𝑜𝑠𝛼0
 

 

 (4) 

𝛿2 =
𝑥

𝑐𝑜𝑠𝛽𝑖
−

𝑏

𝑐𝑜𝑠𝛽0
 

 

 (5) 

2.1. Analytical Solution Considering Geometric Non-linearity and Linear Elastic 

Material 

Initially, the material is characterized as linear elastic. By applying Hooke's Law to bar 1 within the 

deformed structure, we have: 

𝛿1 =
𝐹1𝐿1

𝐸1𝐴1
      (6) 

Thus, 

 

𝐹1 = 𝛿1𝐸1𝐴1

𝑐𝑜𝑠𝛼0

𝑎
 

  (7) 

Substituting Eq. (3) into (1): 

𝐹1 =
𝑐𝑜𝑠𝛽𝑖

𝑐𝑜𝑠𝛼𝑖
(

𝑃

𝑐𝑜𝑠𝛽𝑖𝑡𝑎𝑛𝛼𝑖 + 𝑠𝑒𝑛𝛽𝑖
) (8) 

Then substituting Eq. (4) and Eq. (8) into Eq. (7) we get: 

𝑐𝑜𝑠𝛽𝑖

𝑐𝑜𝑠𝛼𝑖
(

𝑃

𝑐𝑜𝑠𝛽𝑖𝑡𝑎𝑛𝛼𝑖 + 𝑠𝑒𝑛𝛽𝑖
) = 𝐸1𝐴1 [

𝑐𝑜𝑠𝛼0(𝐿 − 𝑥)

𝑎(𝑐𝑜𝑠𝛼𝑖)
− 1] (9) 

Similarly, using Hooke's Law again for bar 2 we have: 

𝛿2 =
𝐹2𝐿2

𝐸2𝐴2
 (10) 
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𝐹2 = 𝛿2𝐸2𝐴2

𝑐𝑜𝑠𝛽0

𝑏
 

  

(11) 

Thus, substituting Eqs. (3) and (5) into Eq. (11) we arrive to: 

𝑃

𝑐𝑜𝑠𝛽𝑖𝑡𝑎𝑛𝛼𝑖 + 𝑠𝑒𝑛𝛽𝑖
= 𝐸2𝐴2 (

𝑥( 𝑐𝑜𝑠𝛽0)

𝑏(𝑐𝑜𝑠𝛽𝑖)
− 1)  (12) 

Noted that the left-hand term of Eq. (12) is incorporated into Eq. (9). This allows us to find an expression 

independent of external loading, as given by Eq. (13): 

𝑐𝑜𝑠𝛽𝑖

𝑐𝑜𝑠𝛼𝑖
[(

𝑥( 𝑐𝑜𝑠𝛽0)

𝑏(𝑐𝑜𝑠𝛽𝑖)
− 1)] =

𝐸1𝐴1

𝐸2𝐴2
[
𝑐𝑜𝑠𝛼0(𝐿 − 𝑥)

𝑎(𝑐𝑜𝑠𝛼𝑖)
− 1]  (13) 

Substituting Eq. (5) into Eq. (11): 

  𝐹2 = [
𝑥(𝑐𝑜𝑠𝛽0)

𝑏(𝑐𝑜𝑠𝛽𝑖)
− 1] 𝐸2𝐴2  (14) 

Using Eqs. (15) and (16), derived from trigonometric relationships in Figure 2, we can determine the 

values for x and y. As: 

𝑥 =
𝐿 tan 𝛼𝑖

tan 𝛽𝑖 + tan 𝛼𝑖
      (15) 

𝑦 =
𝐿 tan 𝛼𝑖 tan 𝛽𝑖

tan 𝛽𝑖 + tan 𝛼𝑖
 (16) 

Finally, substituting Eq. (15) into Eq. (13) we obtain an analytical expression for 𝛽𝑖 as: 

                [
𝑐𝑜𝑠𝛽𝑖

𝑐𝑜𝑠𝛼𝑖
(

𝐿 tan 𝛼𝑖

tan 𝛽𝑖 + tan 𝛼𝑖
𝑐𝑜𝑠𝛽0

𝑏(𝑐𝑜𝑠𝛽𝑖)
− 1)] =

𝐸1𝐴1

𝐸2𝐴2
[
𝑐𝑜𝑠𝛼0 (𝐿 −

𝐿 tan 𝛼𝑖

tan 𝛽𝑖 + tan 𝛼𝑖
)

𝑎(𝑐𝑜𝑠𝛼𝑖)
− 1] 

 

 (17) 

The input parameters for this analytical solution are: 𝐿, 𝑎, 𝑏, 𝐸1, 𝐸2, 𝐴1, 𝐴2 and 𝛼𝑖. By substituting 

these values into Eq. (17), the value of 𝛽𝑖 can be found. 

2.2. Analytical Solution Considering Geometric and Material Non-linearity. 

For this study, bar 1 is considered from a non-linear material, while bar 2 exhibits linear elastic 

behaviour. The constitutive law for the non-liner material will be represented by the following 

hypothetical equation: 

                𝜎1 = 𝐸1(휀1 − 3휀1
2) (18) 

Figure 3 illustrates the stress-strain curve corresponding to Eq. (18): 
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Figure 3.  Stress versus strain curve for the non-linear material. 

Applying Eq. (18) to bar 1 we have: 

                    𝐹1 = 𝐴1𝐸1 (휀1 − 3휀1
2

) (19) 

Where: 

휀1 =
𝐿 sin 𝛽𝑖𝑐𝑜𝑠𝛼0

𝑎[𝑠𝑖𝑛(𝛼𝑖 + 𝛽𝑖)]
− 1 (20) 

By substituting Eqs. (14) and (19) into Eq. (1): 

𝐴1𝐸1(휀1 − 3휀1
2)

=
𝑐𝑜𝑠𝛽𝑖

𝑐𝑜𝑠𝛼𝑖
𝐴2𝐸2 [

𝑥(𝑐𝑜𝑠𝛽0)

𝑏(𝑐𝑜𝑠𝛽𝑖)
− 1] 

   (21) 

Finally, incorporating Eqs. (15) and (20) into Eq. (21) we set the following analytical expression: 

  [(
𝐿 sin 𝛽𝑖𝑐𝑜𝑠𝛼0

𝑎[𝑠𝑖𝑛(𝛼𝑖+𝛽𝑖)]
− 1) − 3 (

𝐿 sin 𝛽𝑖𝑐𝑜𝑠𝛼0

𝑎[𝑠𝑖𝑛(𝛼𝑖+𝛽𝑖)]
− 1)

2
] =

𝑐𝑜𝑠𝛽𝑖

𝑐𝑜𝑠𝛼𝑖

𝐴2𝐸2

𝐴1𝐸1
[

𝐿 tan 𝛼𝑖
tan 𝛽𝑖+tan 𝛼𝑖

𝑐𝑜𝑠𝛽0

𝑏(𝑐𝑜𝑠𝛽𝑖)
− 1] (22) 

The input parameters for calculating the angle 𝛽𝑖 are the same as those used in the analysis for the linear 

elastic material. 

IV. RESULTS 

The geometric and material specifications for the truss discussed earlier are detailed in Table 1. 

Table 1. Geometric and material properties. 

A1 (m²) A2 (m²) E1 (GPa) E2 (GPa) 

1,00E-03 1,00E-03 10 10 

 

Using equation (17), one can determine values for 𝛽𝑖 , and subsequently, through Eqs. (15) and (16), 

ascertain the values of x and y. By subtracting these from the length L and height H, respectively, we 

obtain ∆x and ∆y increments. Eq. (11) then provides the force in bar 2. Later, the force in bar 1 and the 
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applied force P are deduced using Eqs. (1) and (2). Figure 4 displays the obtained results for the 

horizontal displacement of node 2. These results were compared with the ones obtained from the Amaru 

software, a finite element solution developed using the high-performance programming language Julia. 

It is observed that in terms of horizontal displacement, the FEM solution proved to be more rigid 

compared to the analytical response. This can be explained using displacement control as a tool for the 

numerical solution of the nonlinear system. 

 

Figure 4.  Comparison of the results obtained for the horizontal displacement of node 2 for the GNL. 

The same finite element program was used to validate the vertical displacement of node 2, as shown in 

Figure 5. 

 

Figure 5.  Comparison of the results obtained for the vertical displacement of node 2 for GNL and MNL. 

Similarly, by performing the same calculation procedure, and considering bar 1 as non-linear, the 

following displacements were obtained: 
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Figure 6.  Comparison of the results obtained for the horizontal displacement of node 2 for GNL and MNL. 

 

Figure 7.  Comparison of the results obtained for the vertical displacement of node 2 for GNL and MNL. 

Figures 8 and 9, the results from the analysis considering only the geometric non-linearity are compared 

with those considering both GNL and MNL: 
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Figure 8.  Comparison between GNL solution and GNL + MNL for the horizontal displacement of node 2. 

 

Figure 9.  Comparison between GNL solution and GNL+ MNL for the horizontal displacement of node 2. 

In Figure 10, the equilibrium path for node 2 is examined under both scenarios: 
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Figure 10.  Comparison between the GNL analysis and GNL+MNL analysis. 

Through Figures 11 and 12, we compare the intensities of the axial forces in the bars over the horizontal 

and vertical displacement of the node, respectively: 

 

Figure 11.  Comparison between the GNL solution and GNL+MNL for the horizontal displacement of node 2 

and the forces in the bars. 
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Figure 12.  Comparison between the GNL solution and GNL+MNL for the vertical displacement of node 2 and 

the forces in the bars. 

V. CONCLUSIONS 

This study aimed to provide analytical solutions for planar trusses under both geometrically and 

materially non-linear analyses. Despite the seemingly simplistic nature of the truss often considered as 

a foundational model in academic research, the results underscore the depth and complexity of non-

linear behavior, both from a geometric and material standpoint. 

The inclusion of both geometric and material non-linearity in the analyses, as demonstrated, can 

significantly alter the predicted values for nodal displacements and internal bar forces. This fact 

emphasizes the importance of considering these non-linearities, especially in situations where the 

structure may be subject to large displacements or when the material does not follow a linear 

relationship, such as Hooke's law. 

The contrast shown between the results from the analysis considering only geometric non-linearity and 

those incorporating both non-linearities (GNL and MNL) is enlightening. It reveals that by ignoring 

any of these non-linearities in an analysis, one can significantly under or overestimate the structure's 

responses. 

The comparison of the proposed analytical solutions with a finite element-based software (Amaru) 

highlights the accuracy and applicability of the formulations presented. This kind of comparison is vital 

to establish trust in the analytical solutions, especially when they are proposed as a benchmarking tool 

for numerical methods. 

Lastly, it's crucial to note that while this study focused on a specific planar truss, the implications are 

much broader. The deep understanding and the ability to adequately model non-linear behaviors are 

essential in many domains of structural and civil engineering, from building and bridge design to the 

analysis of aerospace components. 

The work presented not only offers a robust methodology for analyzing non-linear trusses but also 

underscores the ongoing need for research and development in analytical and numerical methods that 

can accurately capture the real behavior of structures under varied loadings. 
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