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ABSTRACT 

In recent years, the world has witnessed a tremendous increase in digital cameras and mobile devices which has 

led to an even greater increase in the number of photographs clicked every year on average. Tourists, among 

others, contribute a considerable share to this effect with 1.323 billion international tourist arrivals worldwide in 

2017 alone. With this insurgence in the amount of photographs clicked, arises the problem of recognition. A 

person might wonder what that one landmark was that he once visited. Landmark recognition technology helps 

people better understand and organize their photographs by predicting a landmark label directly from image 

pixels. A possible solution for landmark recognition has been presented by application of deep learning 

techniques. More specifically, convolutional neural networks have been used for detection of these images, with 

the help of open source pre-trained models. A person submitting a snap of a landmark can get relevant 

information regarding the landmark according to the match found from the millions of images present in the 

database. 
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I. INTRODUCTION 

The Google landmark recognition challenge involves building appropriate models that can classify the 

various landmark images provided to it in such a way that it will correctly match each unique input 

image with the actual landmark label.  

Among the many challenges faced was the sheer size of the dataset; containing a massive amount of 

classes at 14,916. Furthermore, each individual class may or may not contain a significant amount of 

images for training purposes. The test set provided also contained many images that were not actually 

landmarks. The total number of images being well over 1.2 million asked for a lot of patience and time 

to download the images and have them sorted according to their unique classes. Many URLs being 

broken and some images being corrupt only added to the challenges faced. Next, the dataset had to be 

split into three separate folders namely train, val, and test, for training, validation, and testing 

respectively as holdout sets for testing the accuracy of the model. 

Some previous solutions applied by others were based on significantly smaller number of classes, i.e., 

lesser number of unique landmark labels which only displayed good results for a narrow portion of the 

entire dataset. 

Our approach aims to provide a robust solution based on 14,916 classes while being comparatively less 

complex in terms of architecture and implementation. We applied transfer learning by using various 

pre-trained models such as VGG16[5], InceptionResnetV2[8], Xception[6], MobileNet[12] and 

Resnet50[9]. Our approach with every pre-trained model involved freezing the convolution base and 

not including the top fully connected layers of the architecture. Next, we added our own fully connected 

layers over the convolution base to form the final architecture. Finally, the model was trained and the 

hyper-parameters were subsequently adjusted to achieve the desired accuracy. 
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II. RELATED WORK 

One of the previous approaches [16] used the VGG16 [5] pre-trained model on 2000 landmark classes 

using sub-sampling method. For the architecture, they used the bottleneck layers of the VGG16 [5] and 

only trained the top three fully-connected layers. The images to be downloaded were first resized to a 

smaller size to make the download feasible, and split into holdout sets before downloading, i.e., each 

set contained only URLs and not images. Afterwards, the images were downloaded according to their 

sets and their classes by individually fetching the images from their URLs through a python script. 

Ultimately, the model was able to achieve an accuracy of 71%. Although the previous approach [16] 

managed to achieve a decent accuracy with minimal effort, the result was obtained on a significantly 

smaller number of classes than the complete dataset which makes it difficult to pinpoint the 

performance of the model over larger datasets which is usually observed in real life scenarios. 

Our approach aimed at providing a solution for the entirely of the dataset instead of only a subset. This 

approach took into consideration how datasets usually are for real life scenarios. Instead of only 

freezing the bottleneck layers and training the top three fully-connected layers, we froze the 

convolutional base of the VGG16 [5] model and added another convolutional layer on top of the 

bottleneck layers for improved feature extraction before adding our fully-connected layers on top of it 

to form the complete architecture. 

The same paradigm was followed for various other pre-trained models such as InceptionResnetV2 [8], 

Xception [6], MobileNet [12] and Resnet50[9]. We observed that although the accuracy would improve 

slightly for some of the other pre-trained models, the validation accuracy would fluctuate wildly and 

the inference scores would be less than desired, which led us to eventually consider VGG16 [5] for the 

task. 

III. METHODOLOGY 

A. Obtaining dataset 

The dataset was in the form of a CSV file which contained three columns namely id, URL, and 

landmark_id. The id column contained id for individual images, URL column contained the address for 

the individual images, and landmark_id contained the class label for that image. The total number of 

images was over 1.2 million. The images were downloaded through a python script that downloaded the 

images according to their class labels and sorted them accordingly by creating separate folders for each 

class label. 



Fig. 1. Sample landmark image 

B. Pre-processing 

The downloaded images had to be split into three separate sets as holdout sets for the purpose of 

training, validation, and testing respectively. The split_folders package in python was used to 

accomplish this with a ratio of 80:10:10 for the three sets.  
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Moreover, several images could not be downloaded due to copyright reasons since the dataset was 

prepared by crowdsurfing method. Thus, many labels were missing in the final dataset. Therefore, 

empty folders had to be created for these labels. 

C. Image Augmentation 

To account for variations in our data to better mimic real life image queries we applied several image 

augmentation techniques such as shear, zoom, and horizontal flip. 



Fig. 2. Sample landmark image 

 


Fig. 3. This figure shows various data augmentation techniques applied 

D. Model architecture 
 

 
Fig. 4. Model architecture 
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The VGG16[5] pre-trained model was used for applying transfer learning in our approach. The first 16 

layers of the model were frozen and the top layers were not included. Afterwards, four fully-connected 

layers were added on top of the convolution layers to form the final model architecture. 

During the initial runs of our model, we observed low training accuracy and slight underfitting which 

indicated that our model needed better feature extraction. As a result, we added  

another convolution layer of our own in between the VGG16[5] layers and the four fully connected 

layers followed by a MaxPooling layer and a Flatten layer, which was then fed into the fully-connected 

layers. 

The fully-connected layers consisted of three layers of decreasing units of 128, 64, and 32 with 

activation ReLU leading to the final output layer consisting of 14916 units with activation as Softmax. 

E. Hyper-parameters 

The batch size for training was set to 500 as a lower batch size led to a poor accuracy. The batch size for 

validation was set to 200. Since the activation function used in the last layer was softmax, therefore the 

loss function used was categorical cross-entropy to assist multi-class classification. 
 

Table- I:. Hyperparameter values 

Hyperparameter Value 

Batch size (Train) 500 

Batch size (Validation) 200 

Optimizer Adam 

Learning Rate 0.001 

Epochs 60 

Loss function Categorical Cross-Entropy 

IV. EXPERIMENTAL RESULTS 

A. Training 

The model was run for two sessions, the first training session was run for 40 epochs at the end of which 

the model achieved an accuracy of 63%. We noticed that the loss for still decreasing up till the last 

epoch thus the accuracy could be improved in further epochs.  

Thus, the second session was run for 20 epochs to improve the accuracy of the model. The model was 

able to achieve an accuracy of 67.4% on a total of 14916 classes during the second training run of the 

model. 

 
Fig. 5. Training 

B. Results 

Table- II:  Pre-trained model comparison 

PRE-TRAINED MODEL TRAINING ACCURACY (2000 CLASSES) 

VGG16[5] 92.2% 

MobileNet[12] 92% 

ResNet50[9] 87% 
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InceptionResnetV2[8] 90% 

Xception[6] 89% 

 

Both VGG16[5] and MobileNet[12] gave quite promising results but the inference scores of VGG16[5] 

turned out be better than that of MobileNET[12]. Therefore, VGG16[5] was chosen for the final model 

architecture to be run on 14916 classes. 
Table- III:  VGG16 final model 

Train accuracy (14916 classes) 67.4% 

Validation accuracy (14916 classes) 60.76% 

Pre-trained model giving most promising result VGG16[5] 

Time for final model training 57 hours 

 

Table- IV:  Comparison with previous approach [16] 

Parameter Previous approach[16] Our approach 

Number of classes 2000 14916 

Train accuracy 71%  67.4% 

Validation accuracy 78.6%  60.76%  

V. CONCLUSION 

A. Summary 

The problem was solved using deep learning techniques, particularly CNN coupled with transfer 

learning to achieve desirable accuracy. The best pre-trained for this problem turned out be VGG16[5] 

which was used by freezing the convolution base and training the fully connected layers. The 

hyper-parameters were fine-tuned after the initial training run to better optimize the model and improve 

model performance. 

B. Future Work 

We aim to apply Deep Local Features (DeLF) to our trained model to make the model learn to 

distinguish between non-landmark and landmark images as the test set obtained largely consisted of 

non-landmark images. DeLF further lets us improve model performance by not assigning labels to 

non-landmark images and only perform predictions if an image contains a landmark. 

Further, the model can be run for even more epochs as the loss was observed to still be decreasing even 

after 60 epochs. 
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