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ABSTRACT 

Several expensive structures have been developed in the past century. Thus, corrective, preventive, and predictive 

maintenance techniques were proposed based on the ability to investigate a monitoring parameter up to the 

inflection point of the component's useful life. Consequently, several structural health assessment methodologies 

have been implemented using smart sensors. In general, damage classification models in this kind of monitoring 

have a limitation due to the influence of temperature on piezoelectric sensors, requiring a temperature 

compensation step (normalization). In this work, a Kohonen map is used with a Principal Component Analysis to 

demonstrate the potential of this kind of model in eliminating the compensation step and classifying the damage 

correctly. For the case study, an aluminum beam instrumented with a PZT (Pb-lead Zirconate Titanate) patch 

was used and subjected to different temperatures in a climatic chamber in 11 levels of temperature. The test 

structure had thickness removals with seven levels at the opposite end of the beam with the sensor. Several 

parameters of the models were changed and demonstrated the availability to use the proposed methodology as an 

approach to the temperature-independent damage model. In conclusion, this type of result enables the use of this 

model in real structural monitoring. 

KEYWORDS: Structural health monitoring, Self-organizing maps, Artificial neural networks.  

I. INTRODUCTION 

Over the last few decades, before the current understanding of maintenance was developed, corrective 

actions were already in place to keep structures or equipment functioning [14]. Thus, corrective, 

preventive, and predictive maintenance techniques arise based on the ability to investigate a monitoring 

parameter up to the inflection point of the component's useful life. Among the predictive maintenance 

techniques, Impedance-based Structural Health Monitoring (ISHM) aims to identify the damage, 

whether in real-time or not [3, 9, 10, 13]. This non-destructive method uses the piezoelectric property 

of specific materials such as sensors/actuators that, when they suffer some damage, produce a change 

in the electrical potential difference [25]. The method consists of fixing a Pb-lead Zirconate Titanate 

(PZT) sensor/actuator in the investigated structure, which, after being excited at high frequency, 

promotes the excitation and the corresponding measurement of the structural vibration signature [9, 10, 

13, 25]. This excitation enabled by the patch causes the structure to undergo deformation, consequently 

generating a vibration in the system. With impedance being considered as resistance to movement, the 

electrical measurement of the PZT patch incorporates both the electrical impedance aspect of the 

component and mechanical impedance due to the structure [13, 14].  

On the other hand, methods based on machine learning and artificial neural networks have grown over 

the last few years. One of these methods is the unsupervised network called Self-Organizing Maps 

(SOM), and the answers are not known but are deduced by their similarities. When requested, the 

algorithm only extracts knowledge from the input data [8]. Another statistical and machine learning 
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technique is Principal Component Analysis (PCA) which aims to reduce the dimensions of a dataset to 

reveal information that may be hidden [24].  

In their study, Buethe, Kraemer, and Fritzen [4] employed Self-Organizing Maps (SOM) in the field of 

Structural Health Monitoring (SHM) to discern between data obtained from piezoelectric sensors in 

their pristine condition and the presence of damage under varying environmental conditions. In 

addition, the authors specifically examined two failure modes: degradation and sensor breakage. 

However, as highlighted in this research, addressing the complexities associated with changes in 

environmental conditions remains a challenge.  

Angulo-Saucedo et al. [2] proposed a monitoring system for damage classification using normalization 

techniques, PCA, and supervised Self-Organizing Maps in two aluminum plates with different 

characteristics and a composite material plate (CRFP). First, different masses were attached to the 

aluminum plates in the structure to simulate damage conditions. Then, the real damage was done on the 

composite material plate as delamination and cracking. Due to the excellent results, validating the 

techniques, supervised Kohonen and X–Y fusing Kohonen about damage classification was possible.  

Abdeljaber and Avci [1] presented a non-parametric algorithm for anomaly detection that combines 

SOM with a pattern recognition neural network in a finite element model (FEM) for the grid structure 

constructed using Abaqus software. As damage conditions, stiffness losses in the transverse beams, 

changes in boundary conditions, and noise-contaminated data were considered. It was shown that the 

algorithm could locate several damage cases, including noise effects.  

Tibaduiza et al. [26] used SOM with the Multiway Principal Component Analysis (MPCA), Discrete 

Wavelet Transform (DWT), Squared Prediction Error (SPE) to detect and classify damage conditions 

on an Airbus A320 aircraft fuselage and multilayer carbon fiber reinforced plastic (CFRP) plate. As a 

result, all cases of simulated damage were detected. 

Oliveira Jr et al. [12] used a method based on electromechanical impedance (ISHM) damage 

classification and self-organized maps (SOM) on a diamond grinding tool. Even though the application 

was made on a small dataset, they still significantly improved the classification of anomalies, 

demonstrating the effectiveness of this technique.  

This work aims to use Kohonen's maps to obtain estimates of faults and their severity through data 

obtained from tests carried out by ISHM. To resolve the problem of data presented as false-positive 

about temperature variation, PCA was applied to reduce the dimensionality of the dataset to reduce 

errors.  

This article is organized as follows. Section II presents the theoretical framework for ISHM, SOM, and 

PCA and ends with the experiment developed. Then, in section III, it was shown how the temperature 

variation affected the collected data and a comparison between the results obtained from applying the 

SOM in the original dataset and the modified by the PCA. Finally, in section IV, final considerations 

are presented. 

II. METHODOLOGY 

Several studies and research have been conducted during the last two decades on ISHM (Impedance-

based Structural Health Monitoring). According to these studies, the methodology can prevent 

situations with high maintenance costs and damage that can lead to fatal accidents. Such occurrences 

can be avoided by implementing a monitoring system, avoiding unnecessary maintenance, and 

increasing safety [18]. Furthermore, the ISHM technique has a high significance level due to its 

sensitivity in detecting initial damage, relative cost, and low need for component customization [5, 13, 

14, 22, 23, 25]. 
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2.1. Impedance-based structural health monitoring 

Piezoelectric materials are essential for performing the ISHM technique due to their conversion between 

electrical and mechanical properties. Since these conversions occur in two directions, two effects are 

considered, the direct and the inverse principle. In the direct principle, an electrical potential is 

generated at the terminals due to mechanical strain in the transducer. In the inverse principle, 

mechanical strain occurs when applying an electrical voltage to the transducer terminals. These effects 

are applied to the structure to obtain a response in electromechanical impedance values. Equations 1 

and 2 represent, respectively, the direct and inverse principles [5]. 

 𝐷 = 𝑑𝜎 + 휀𝐸1  (1) 
 

 𝑆 = 𝑠𝜎 + 𝑑𝐸1 (2) 

where  𝐷  is the strain vector,  𝐸1  is the electric field vector,  𝑆  is the strain tensor,  𝜎  is the stress 

vector,  𝑑  is the voltage tensor piezoelectric,  휀  is the dielectric tensor of the material and  𝑠  is the 

elastic property of the piezoelectric material. 

In view of this, Liang, Sun, and Rogers formulated a model to characterize the measurement process of 

electromechanical impedance in systems with one degree of freedom. This model utilizes the inverse 

of impedance, known as electromechanical admittance. By combining the mechanical impedance 

function of the PZT patch, denoted as 𝑍𝑎(𝜔), with the structural impedance of the system, denoted as 

𝑍(𝜔), the admittance function 𝑌(𝜔) can be obtained as shown in equation 3 [16, 17]. 

 

𝑌(𝜔) =
𝐼

𝑉
= 𝑖𝜔𝑎 (𝜖3̅3

𝑇 (1 − 𝑖𝛿) −
𝑍(𝜔)

𝑍(𝜔) + 𝑍𝑎(𝜔)
𝑑3𝑥

2 �̂�𝑥𝑥
𝐸 ) (3) 

where 𝑌 is the electrical admittance, 𝑉 is the input voltage of the PZT actuator, 𝐼 is the output current 

of the PZT patch, 𝑎 is the geometric constant of the PZT patch, 𝑑3𝑥
2  is the coupling constant PZT patch 

in an x direction with zero strain, �̂�𝑥𝑥
𝐸  is the Young's complex modulus of PZT patch with zero electric 

field, 𝜖3̅3
𝑇  is the complex dielectric constant of PZT patch at zero voltage, 𝜔 is the angular frequency, 𝑍 

is the complex impedance of the structure, 𝑍𝑎 is the complex impedance of the PZT patch and 𝛿 is the 

tangential dielectric loss factor of PZT patch. 

Impedance signatures do not provide data about damage to the structure. However, when observing a 

structure’s signature without damage and after, one can qualitatively perceive the occurrence of the 

failure through its structural changes (local stiffness, mass, and damping). Therefore, to carry out a 

quantitative procedure, a damage index for identifying damages, also called damage metrics, is 

necessary. The most used of these indices is the Root Mean Square Deviation (RMSD), a scalar value 

that provides quantitative information, shown in equation 4 [17, 18, 21]. 

 𝑀 = ∑ √
[𝑅𝑒(𝑍𝑖,1) − 𝑅𝑒(𝑍𝑖,2)]2

[𝑅𝑒(𝑍𝑖,1)]2

𝑛

𝑖=1

 (4) 

where 𝑀 is the failure measure, 𝑅𝑒(𝑍𝑖,1) represents the real part of the PZT patch measured under 

healthy conditions, 𝑅𝑒(𝑍𝑖,2) represents the real part of the signature to be compared and i is the 

frequency point. 

If the RMSD index has a significant value, the signals measured in the damaged and undamaged 

structure indicate a larger difference, therefore, a significant defect. Even though many SHM studies 

have been carried out on this index, a problem is challenging to solve: the effects not related to the 

damage, such as temperature variations, which affect the frequency influencing the value of the index 

[21, 22]. 
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At the same time, another damage metric is the correlation coefficient deviation (CCD). This assigns a 

value to the difference between two data sets. To obtain this value, it is necessary to calculate the 

correlation coefficient (CC) shown in equation 5 [22]. 

 𝐶𝐶 =
1

𝑛
∑

(𝑅𝑒(𝑍𝑖,1) − 𝑅𝑒(�̅�1))(𝑅𝑒(𝑍𝑖,2) − 𝑅𝑒(�̅�2))

𝑆𝑍1
𝑆𝑍2

𝑛

𝑖=1

 (5) 

where 𝑆𝑍1
 is the standard deviation of the impedance signal of the reference and 𝑆𝑍2

 is the standard 

deviation of the impedance signal to be compared. After calculating equation 5, equation 6 is intended 

to calculate the CCD. 

 𝐶𝐶𝐷 = 1 − 𝐶𝐶  (6) 

As the CC metric approaches +1, it indicates that the peaks of the input signal closely match those of 

the reference signal, suggesting that the structure is in good condition. However, as the CC values 

deviate from +1, it may signify damage, with lower CC values indicating more pronounced deviations 

in the signal and, thus, more significant damage [21, 22]. 

2.2. Kohonen’s maps 

Teuvo Kohonen, a prominent figure in the field of neurocomputing, is credited with pioneering the 

development of Self-Organizing Map (SOM) networks. With extensive research in self-organization 

theory, associative memories, neural networks, and pattern recognition, Kohonen has authored over 200 

articles and four books on these subjects [4, 20]. 

In this sense, Teuvo Kohonen's research on self-organizing maps began in 1981 to develop an efficient 

algorithm that would map similar patterns given as vectors next to each other in the input space into 

continuous locations in the output space [4, 20]. 

The SOM algorithm was one of the factors in the resumption of the popularity of artificial neural 

networks (ANNs). It is the most used ANN learning rule in unsupervised algorithms. Moreover, it has 

been implemented in many public and commercial neural network software packages [20]. 

SOM produces a similar plot of the input data in its basic form. Non-linear statistical relationships 

between extensive data are converted to simple geometric relationships on a smaller screen, usually a 

two-dimensional image of nodes [15]. 

The network employs a competitive and unsupervised learning algorithm wherein neurons in the output 

layer compete for activation. As a result, only one output neuron is activated for each input pattern, 

following the "winner takes all" principle. To facilitate this competition, inhibitions on the lateral 

connections between the output neurons in the same layer are implemented, as illustrated in Figure 1 

[6]. 

 

Figure 1 - Representation of the neighborhood interaction between the neurons of a SOM network.  
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In this type of topology, each output neuron is connected to all neurons in the input layer, also called 

the fully connected layer. As shown in Figure 2, this network represents a feedforward structure with a 

single computational layer after the input layer [12]. 

 

Figure 2 - Representation of a Kohonen neural layer. 

Once a Kohonen networks construction starts, the connections' weights will have random values. After 

applying these weights, each node will calculate the function in equation 7 [1, 11]. 

 𝑣 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑗|𝑥 − 𝑤𝑗|;         𝑗 = 1,2, . . . , 𝑙 (7) 

In the SOM network, the input vector is represented by x, the weights are denoted by w, and l represents 

the number of neurons in the network [1]. The winning neuron is determined based on the criterion of 

maximizing the inner product, which is equivalent to minimizing the Euclidean distance between x and 

w, as described by equation 7 [1]. 

Furthermore, to ensure cooperative behavior among neurons, it is crucial to establish a relationship 

between the lateral distance separating winning and excited neurons. This connection can be quantified 

differently depending on the network configuration. For instance, in a one-dimensional network, the 

lateral distance can be represented by |j-1|. On the other hand, in a two-dimensional grid, the lateral 

distance is defined by equation 8 [1, 11]. 

 𝑑𝑗,𝑖
2 = |𝑟𝑗 − 𝑟𝑖|2 (8) 

where 𝑟 is the discrete vector of the positions of neurons excited 𝑗 and winning 𝑖 [1]. 

Then the topological neighborhood process will take place. At this point, the winning neuron will excite 

the closest compared to the farthest. The Gaussian function can be used to model the lateral interaction, 

as shown in equation 9 [1, 11]. 

 ℎ𝑗,𝑖(𝑥) = 𝑒𝑥𝑝(
−𝑑𝑗,𝑖

2

2𝜎2
) (9) 

where ℎ𝑗,𝑖(𝑥) is the topological neighborhood, 𝑑𝑗,𝑖
2  is the lateral distance, 𝜎 is the effective width of the 

topological neighborhood, 𝑖 is the winning neuron, and 𝑗 is the excited neuron [1]. The next and last 

step is to update the weights using equation 10 [11]. 

 
𝛥𝑤𝑗𝑖 = (𝜂(𝑡))(𝑇𝑗,𝐼(𝑥)(𝑡))(𝑥𝑖 − 𝑤𝑗𝑖) (10) 

where 𝑡 is the number of epochs, 𝜂(𝑡) is the learning rate over time and 𝑇𝑗,𝐼(𝑥) is neighborhood region 

[1]. In the output layer, in two-dimensional cases, there can be two types of grids, hexagonal, as shown 

in Figure 4, or rectangular, as shown in Figure 3. 
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As can be seen, in the hexagonal topological map, each neuron is surrounded by six neighboring 

neurons, determined by the number of faces of the element. In contrast, the rectangle has four neighbors. 

In the rectangular topology, the neighborhood calculation is done with the four neighbors, creating 

distortions in the network and causing accumulated errors. However, in the hexagonal topology, the 

behavior is similar in the six directions, making the visualization more pleasing. 

2.3. Implementation of Kohonen Maps 

In this work, the Python language was used to implement Kohonen's self-organizing maps due to its 

dynamic nature and object-oriented capability, which makes it suitable for a wide range of applications, 

including scientific and non-scientific purposes [7]. Furthermore, the decision to use Python was 

motivated by its extensive collection of libraries and straightforward syntax. Table 1 provides an 

overview of the libraries that will be used to implement the Kohonen maps, along with a brief 

description of their functionality. 

Table 1. Available libraries in Python for implementing SOM networks, with their respective descriptions. 

Libraries Description 

Numpy Extensive collection of functions for math operations. 

Pandas Data manipulation and analysis functions. 

MiniSom Minimalist implementation of Self-organizing maps. 

Matplotlib Creating graphs and visualizing data in general. 

Scikit-learn Machine learning. 

 

As evidenced in Table 1, the MiniSom library stands out as a major Python library for implementing 

Kohonen's self-organizing maps, making it a good choice for the current study's structural integrity 

monitoring needs. In addition, this library, available in a GitHub repository developed by Giuseppe 

Vettigli, serves as a valuable resource for students seeking to understand the complexities of the 

Kohonen network and allows researchers to build their applications quickly [27]. 

To develop applications using the MiniSom library, the collected data set must be a matrix, where each 

line refers to an observation [27]. After loading the dataset using the Pandas library, the next step is to 

initialize the self-organized map by executing the MiniSom command. Regarding the parameters that 

can be used in the previous function, x and y represent the dimensions of the resulting map, input_len 

is the number of elements of the input vector, sigma represents the propagation of the neighborhood 

function, learning_rate is the initial learning rate, decay_function means the function that reduces 

learning_rate and sigma parameters at each iteration, neighborhood_function is the function that 

weights the neighborhood of a position on the map, topology is the topology type of the map and 

activation_distance represents the distance used to activate the neurons of the map [27]. Table 2 shows 

some items available by default for each parameter. 

Figure 3 – Hexagonal map. Figure 4 - Rectangular map.  
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Table 2. Examples of default values for the initialization parameters of the self-organizing map via the 

MiniSom library. 

Neighborhood function Topology Activation distance 

gaussian rectangular euclidean 

mexican_hat hexagonal cosine 

bubble  manhattan 

triangle  chebyshev 

The values of the x, y, input_len, learning_rate, and sigma parameters are contingent upon the specific 

data set being utilized. While the decay_function parameter normally employs the asymptotic decay 

function, as described in equation 11 [27]. 

 
𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑡𝑖𝑐_𝑑𝑒𝑐𝑎𝑦 =

2(𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒)

(𝑚𝑎𝑥_𝑖𝑡𝑒𝑟) + 𝑡(𝑚𝑎𝑥_𝑖𝑡𝑒𝑟)
 

(11) 

where learning_rate is the current learning rate, 𝑡 is the current iteration, and max_iter is the maximum 

number of iterations performed during the neural training process [29]. 

Following the initialization of the self-organizing map (SOM), the subsequent step entails initializing 

the connection weights with random data samples, accomplished by employing the 

random_weights_init command. Subsequently, the training process is carried out using the train 

function. Upon completion of training, the winner function can be utilized to determine the position of 

the winning neuron for a given sample [27]. 

The main evaluation method of the SOM network is topological error quantization. The average 

distance between each input vector and its best corresponding unit is calculated in the quantization error, 

shown in equation 12 [27]. 

 𝐸𝑞 =
1

𝑛
∑|𝑣𝑛 − 𝑤𝑤𝑖𝑛|

𝑛

1

 (12) 

where 𝑣𝑛 is the input vector, 𝑤𝑤𝑖𝑛 is its best matching unit, and 𝑛 is the total of samples [11]. 

The topological error is calculated by finding the first and second best-matching neurons in the map for 

each input and then evaluating the positions. A sample where these two nodes are not close means an 

error has occurred. Therefore, the topographic error is given by the total number of errors divided by 

the number of samples shown in equation 13 [27]. 

 𝐸𝑞 =
1

𝑛
∑ 𝑢(𝑣𝑛)

𝑛

1

 (13) 

where 𝑢(𝑣𝑛) represents the occurrence of the error and 𝑛 is the total number of samples [11]. 

2.4. Principal Component Analysis 

The primary objective of the PCA (Principal Component Analysis) normalization technique is to 

achieve a unit variance in the data, thereby eliminating redundancies and improving results. This is 

achieved by transforming the main components into a new set that is initially uncorrelated, with the 

first component accumulating the highest variance. Ultimately, this process helps to reduce dimensions 

and mitigate redundancies in the data, as supported by references [2, 19, 23]. 

With the dataset organized in a matrix form, the first step is calculating covariance using equation 14. 
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 𝐶 =
1

𝑛 − 1
𝑋𝑇𝑋 (14) 

where 𝑛 represents the number of lines, 𝑋𝑇 is the transverse matrix and 𝑋 is the matrix. The next step 

is to calculate the subspaces defined by the eigenvalues and eigenvectors of the covariance matrix using 

equation 15 [2, 23]. 

 𝐶�̃� = �̃�𝐴 (15) 

where 𝐴 is a diagonal matrix of eigenvalues and �̃� are the eigenvectors of the covariance, called 

principal components. Since the most important patterns are defined according to the eigenvalues of 

eigenvectors, the structure is constructed by the transformation matrix, where the number of principal 

components with the least number of trials is chosen. Thus, the PCA model is formed, representing a 

reduced and better version of the original data [2, 23]. 

 

2.5. Induced failure in an aluminum beam 

The experiment utilized an aluminum beam with specific dimensions (500mm in length, 38mm in 

width, and 3.2mm in thickness) coupled to a PZT patch (1mm in thickness and 20mm in diameter). The 

PZT patch was affixed 100mm away from one edge of the beam. Then, impedance signatures data was 

measured and analyzed to determine the health condition of the beam. The data was acquired in a 

controlled environment with temperature and humidity maintained using a Platinous EPL-4H series 

climatized chamber, as illustrated in Figure 5. This chamber is installed in the Structural Mechanics 

Laboratory of the School of Mechanical Engineering at the Federal University of Uberlandia. 

 

Figure 3 - Platinous EPL-4H series climatized chamber. 

The failure mechanisms used were surface grinding on one of the faces of the 30mm width beam at 

70mm from the opposite end of the PZT patch but on the same face. Figure 6 illustrates an image of 

one of the machined states. 
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Figure 4 - Beam in the machined state. 

Eleven temperature levels were selected, ranging from 10º C to 40º C, in the increasing form of 3º C in 

3º C, as shown in Table 3. 

Table 3.  Temperature values in this case study. 

Levels Temperature (ºC) 

1 10 

2 13 

3 16 

4 19 

5 22 

6 25 

7 28 

8 31 

9 34 

10 37 

11 40 

Impedance data was collected in intervals, with the chamber temperature gradually rising during the 

data collection process. After each temperature cycle, the chamber was held steady for 30 minutes to 

allow the new temperature to stabilize, and data was collected in a new cycle. This process was repeated 

for 11 temperature cycles, with nine different levels of damage induced in the samples. In total, 30 

repetitions were performed, resulting in 2970 collected signatures. The first two levels of damage served 

as reference signals, representing the original beam in a controlled environment. The remaining seven 

levels of damage were intentionally induced to study the behavior of a specific flaw in the collected 

signatures. 

Regarding the 2970 observations collected, each cycle had 4000 attributes that are not in a multivariate 

situation. Therefore, the variables cannot be interpreted in isolation, being related to each frequency 

point from 30000 Hz to 70000 Hz, with a step of 10 Hz. Figure 7 illustrates the plot of 4 signatures 

collected referring to baseline conditions without temperature variation for better visualization. 
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Figure 5 - Baseline without temperature variation. 

As mentioned, the EPL-4H chamber was utilized to simulate temperature variations. In Figure 8, the 

plot showcases four collected signatures, which serve as a reference to the baseline, but with varying 

temperatures of 10°C, 22°C, 31°C, and 40°C. 

 

Figure 6 - Baseline with temperature variation. 

As evident from Figures 7 and 8, both depict plots of signature data obtained from the same baseline 

condition. However, in Figure 8, the temperature variation resulted in a shift of the signals in the 

horizontal direction, potentially leading to false alarms in anomaly detection. 

III. RESULTS AND DISCUSSION 

After processing the data, this is one of the most critical steps in any application, using the dataset with 

4000 attributes and the MiniSom library with the parameters defined as dimensions=200x200, 

topology=hexagonal, neighborhood_function=gaussian, learning_rate=0.5 and sigma=10. Figure 9 

illustrates this map. 
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Figure 7 - Kohonen map for dataset with 4000 attributes. 

In Figure 9, the map is designed with a bar on the right side representing the neighborhood's distance 

of neurons. Each bar number is color-coded on the map for better visualization. The legend includes 

two baseline levels and seven damage levels, denoted by the "×" marker, each represented by a distinct 

color indicating the position of the winning neuron. As mentioned, the topology parameter was set to 

hexagonal to exclude topological errors, making the quantization error evaluation method the sole 

approach. However, this method revealed an error of 183.80. Therefore, the PCA method was applied 

to reduce the dataset of 4000 attributes to 20 principal components to mitigate this error. The MiniSom 

library was then utilized with the following parameters: dimensions = 300x300, topology = hexagonal, 

neighborhood_function = gaussian, learning_rate = 0.5, and sigma = 10. The result of this step is shown 

in Figure 10. 

 
Figure 8 - Kohonen map for Dataset with 20 principal components. 
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As shown in Figure 10, it was possible to disturb the mesh more to reduce false classifications. 

Nevertheless, compared with the previous output map, it is possible to verify that there was a greater 

dispersion of the data concerning the increase in the neighborhood adjustments and that, due to the 

application of the PCA method, the value of the quantization error was reduced to 31.54. It was also 

possible to observe that, in Figures 9 and 10, the variation in the same type of damage comes from the 

difficulty of Kohonen's self-organizing maps in analyzing temperature variation. 

IV. CONCLUSIONS 

This contribution demonstrated the utility of the Self-organized Maps (SOM) and the Principal 

Component Analysis (PCA) for the structural health monitoring of aluminum beams. Specifically, the 

electromechanical impedance technique, a non-destructive testing approach, was employed. In addition, 

the SOM facilitated data grouping and classification using artificial neural networks, making it a 

valuable tool in structural health monitoring (SHM). 

One of the main benefits of employing the SOM network is its easy implementation. Once the weights 

are defined, matrix multiplication based on the specified number of iterations is all that is needed. This 

efficient approach results in clear separation and identification of classes, as evidenced by the output 

maps presented in the previous section. However, the main disadvantage of SOM networks is the 

variation of the same class due to temperature changes, which can confuse damage that is just a 

temperature variation, which is the main problem when analyzing real-world practices. 

Regarding the proposed application, the deformations in the aluminum beam caused by the temperature 

variation greatly impacted the detection of anomalies. To reduce the quantization error value found in 

this problem, the PCA method with 20 principal components was used, making it possible to reduce the 

quantization error from 183.80 to 31.54. 

Hence, the efficacy of utilizing Kohonen networks in conjunction with PCA for classifying distinct 

damage conditions experienced by the selected aluminum beam structure was demonstrated. This 

highlights the potential of this unsupervised network as an efficient tool in the structural health 

monitoring process. 
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