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ABSTRACT 

In this paper we analyse the impact of temperature variations on design parameters of CNTFET with particular 

reference to the output and trans-characteristics, the output resistance, the transconductance and cut-off 

frequency. The analysis of CNTFET I-V characteristics allows to say that, except for the transition regions, 

there are very slight differences with temperature variations. 
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I. INTRODUCTION 

Carbon NanoTubes, also known with the acronym CNTs (Carbon NanoTubes), have unique 

electronic and mechanical properties that make them promising candidates for future nanotechnology 

applications [1-3]. 

In particular, CNTs, for their extraordinary electronic properties, are used as channel in CNTFETs 

(Carbon Nanotube Field Effect Transistors), contrary to MOSFETs devices, where the channel is of 

silicon. In this way it is possible to obtain good operation even at very high frequencies, as we have 

shown in our previous papers [1-11]. 

For conventional CNTFET we have already proposed a compact, semi-empirical model [5], in order 

to carry out static and dynamic analysis of A/D circuits [12-15]. 

In this paper we analyse the impact of temperature variations on design parameters of CNTFET with 

particular reference to the output and trans-characteristics, the output resistance, the transconductance 

and cut-off frequency. 

The presentation of the paper is organized as follows. At first we present a brief review of our 

CNTFET model used in the proposed analysis. Then we show and discuss the simulation results 

together with conclusions and future developments. 

 

II. A BRIEF REVIEW OF OUR CNTFET MODEL 

An exhaustive description of our I-V CNTFET model is in [5-6]. Therefore, we suggest the reader to 

consult these References.  
It is a compact, semi-empirical model directly and easily implementable in simulation software to 

design analog and digital circuits: in fact, the most complex part of the model is contained in Verilog 

A [16]. 
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With the hypothesis that each sub-band decreases by the same quantity along the whole channel 

length, the total drain current can be expressed as [5]: 

                                               DS Sp Dp

p

4qkT
I = ln 1+expξ -ln 1+expξ

h
 
                                                (1) 

where k is the Boltzmann constant, T is the absolute temperature, h is the Planck constant, p is the 

number of sub-bands, while Sp and Dp , depending on temperature through the sub-bands energy 

gap, and VCNT, voltage surface, have the expressions reported in  [5]. 

Regards to C-V model, an exhaustive description of our C-V model is widely described in [10] and 

therefore the reader is requested to consult it, in which the following expressions of quantum 

capacitances CGD and CGS are explained: 
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In order to simulate correctly the CNTFET behaviour, we needed to estimate parasitic capacitances 

and inductances as well as the drain and source contact resistances. We have achieved this goal using 

an empirical method exhaustively described in [5]. In this way all elements of the equivalent circuit of 

Fig. 1 can be determined.  
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Figure 1. Equivalent circuit of  n-type CNTFET. 

 

It is similar to a common MOSFET one [17] and is characterized by the flat band generator VFB, the 

quantum capacitances CGS and CGD , the inductances of the CNT Ldrain and Lsource and the resistors 

Rdrain and Rsource, in which the parasitic effect due to the electrodes are also included.  

III. TEMPERATURE VARIATIONS ON I-V CHARACTERISTICS 

To investigate on the I-V CNTFET characteristics in different temperatures, we consider a single wall 

n-CNTFETs with a diameter of 1.509 nm and 22 nm long in the ballistic transport hypothesis.  

We design a standard simulation circuit where, in static conditions, alternately we were changing VGS 

and VDS and vice versa.  

We performed the analysis at 100 K, 300 K and 500 K as shown in Fig. 2 and Fig.3. 
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Figure 2. IDS versus VDS and relative zoom. 

 
 

Figure 3. IDS versus VGS and relative zoom. 

 

The plots on the left are zoomed on small voltages in order to underline the temperature change 

effects. 

From the analysis of Figs. 2 and 3, we can say that the increasing temperature at lower quiescent 

voltages leads to a lower drain current, especially on the knee of the curve. This is a MOSFET 

technology common feature that guarantees a negative current feedback that prevents the device break 

at higher temperatures.  

It can easily see that those curves suffer a negligible variation in terms of IDS in the extreme conditions 

of 100 K and 500 K.  

Moreover, these changes are often comparable with the CNTFET technological process uncertainties 

and almost null. The largest variation is in the knee region where we measure an IDS of 13.4 uA at 500 

K and IDS of 15.1 uA at 100 K for VGS = 0.7 V and VDS = 0.5 V. 

IV. TEMPERATURE VARIATIONS ON TRANSCONDUCTANCE AND OUTPUT 

RESISTANCE 

We investigate about the other design parameters of CNTFET, i.e. the transconductance and the 

output resistance of the device. As you can see hereafter, in these cases we discover larger differences 

than the previous ones so we decided to extend the analysis to intermediate temperature values (200 K 

and 400 K).   

We adopt a circuit topology able to increase slightly an input voltage and estimate the IDS changes in 

order to perform differential measurements.  

The results of this analysis are reported in the following figures. 
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In particular in Fig.4 we show the CNTFET transconductance on different working conditions. 

Comparing these results with the I-V characteristics we can say that in higher voltage ranges (more 

than 1.5 V) and at higher temperature, IDS increases. This inversion leads to the large variations 

observed in the previous figures.  

 
Figure 4. Transconductance on different working conditions 

A plot of the output resistance, ROUT, fundamental parameter in the design of integrated active loads 

or mirrors, is reported in Fig. 5, whose details (zooms) are shown in Figures 6 and 7. 

 

 
 

Figure 5.  ROUT versus VDS. 
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Figure 6. Zoom of ROUT versus VDS. 

 

 
 

 

Figure. 7. ROUT divided by the value of  ROUT at 100K. 

 
The output impedance trend does not change in different temperature conditions.  

It can also easy to recognize the two working regions of the device: the triode region with a very poor 

output resistance and the saturation region with an impedance next to the MOSFET technology.  After 

the peak at 4.6 V, CNTFET enters in the tunnelling region where IDS increases exponentially and ROUT 

decreases at the same ratio.  

In Fig. 6 we find the largest differences after the temperature changes. At lower temperature there is a 

faster transition that leads to a maximum output resistance larger than in higher temperatures. 

Fig. 8 shows the simulated gain versus frequency for an inverter gate, based on CNTFET, where it is 

easy to see that the gain is quite independent on temperature. 
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Figure 8. CNTFET frequency perfromance. 

 

It is possible to determine the cut-off frequency as a function of temperature, as illustrated in 

Fig. 9. 

 

 

 

 

 

 

 

 

 

  

 

 

 

 
Figure 9. Cut-off frequency versus temperature. 

 
It is clearly shown that the increasing temperature leads to a gain and a cut-off frequency both lower. 

V. CONCLUSION AND FUTURE DEVELOPMENTS  

In this paper we analysed the impact of temperature variations on design parameters of CNTFET with 

particular reference to the output and trans-characteristics, the output resistance, the transconductance 

and cut-off frequency, using a compact, semi-empirical model, already proposed by us [5]. 

To investigate on the I-V CNTFET characteristics in different temperatures, we considered a single 

wall n-CNTFETs with a diameter of 1.509 nm and 22 nm long in the ballistic transport hypothesis.  

From the analysis of CNTFET I-V characteristics, we can affirm that, except for the transition 

regions, we found very slight differences when temperature changes. Furthermore, the general device 

behaviour was found to be very MOSFET-like, thus it is possible to adapt the existing circuits to 

CNTFET ones without difficulties. 
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Actually we are studying the effect of noise [18]  and of temperature in the CNTFET-based design of 

A/D circuits [19], considering also the effects of parasitic elements of interconnection lines in CNT 

embedded integrated circuits [20]. 
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