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ABSTRACT 

This paper is devoted to the synthesis of combinational logic circuits through computational intelligence or, more 

precisely, using evolutionary computation techniques. Are studied two evolutionary algorithms, the Genetic and the 

Memetic Algorithm (GAs, MAs) and one swarm intelligence algorithm, the Particle Swarm Optimization (PSO). 

GAs are optimization and search techniques based on the principles of genetics and natural selection. MAs are 

evolutionary algorithms that include a stage of individual optimization as part of its search strategy, being the 

individual optimization in the form of a local search. The PSO is a population-based search algorithm that starts 

with a population of random solutions called particles. This paper presents the results for digital circuits design 

using the three above algorithms. The results show the statistical characteristics of this algorithms with respect to 

the number of generations required to achieve the solutions. The article analyzes also a new fitness function that 

includes an error discontinuity measure, which demonstrated to improve significantly the performance of the 

algorithm. 
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1. INTRODUCTION 

In recent decades computational intelligence by means of evolutionary computation techniques have been 

applied to the design of electronic circuits and systems, leading to a novel area of research called 

Evolutionary Electronics (EE) or Evolvable Hardware (EH) [3]. EE considers the concept for automatic 

design of electronic systems. In- stead of using human conceived models, abstractions and techniques, EE 

employs search algorithms to develop implementations not achievable with the traditional design 

schemes, such as the Karnaugh or the Quine-McCluskey Boolean methods [1, 4, 5]. 

This paper proposes three evolutionary techniques for the design of combinational logic circuits, namely a 

Genetic Algorithm (GA), a Memetic Algorithm (MA) and a Particle Swarm Optimization (PSO) scheme. 

Bearing these ideas in mind, the organization of this article is as follows. Section 2 presents the GA, the 

MA is described in section 3 and the PSO is detailed in section 4. 

2. THE GENETIC ALGORITHM 

Genetic Algorithms are adaptive heuristic search algorithms based on the evolutionary ideas of natural 

selection and genetic. The basic concept of GAs is designed to simulate processes in natural system 

necessary for evolution, specifically those that follow the principles first laid down by Charles Darwin of 



 

International Journal of Advances in Engineering & Technology, May 2011. 

©IJAET                                                                                                             ISSN: 2231-1963 

199    Vol. 1,Issue 2,pp.198-205 

 

survival of the fittest. As such they represent an intelligent exploitation of a random search within a 

defined search space to solve a problem [2]. First pioneered by John Holland in the 60s, GAs has been 

widely studied, experimented and applied in many fields in engineering worlds. Not only does GAs 

provide an alternative method to solving problem, it consistently outperforms other traditional methods in 

most of the problems. 

GAs was introduced as a computational analogy of adaptive systems. They are modelled loosely on the 

principles of the evolution via natural selection, employing a population of individuals that undergo 

selection in the presence of operators such as mutation and recombination (crossover). A fitness function 

is used to evaluate individuals, and reproductive success varies with fitness. 

In this section we present the adopted GA, in terms of the circuit encoding, the genetic operators and the 

fitness function. 

2.1. Problem Definition and Circuit Encoding 

A truth table specifies the circuits and the goal is to implement a functional circuit with the least possible 

complexity. Four sets of logic gates have been defined, as shown in Table 1, being Gset 2 the simplest 

one and Gset 6 the most complex gate set. Logic gate named WIRE means a logical no-operation. 

Table 1. Gate sets. 

Gate Set                        Logic gates 
 

Gset 2   {AND, XOR,WIRE} 

Gset 3   {AND, OR, XOR,WIRE} 

Gset 4   {AND,OR,XOR, NOT,WIRE} 

Gset 6  {AND,OR,XOR,NOT,NAND,NOR,WIRE} 

 

Section 5 exhibits the computational results. Finally, section 6 outlines the main conclusions. 

 

In the presented scheme the circuits are encoded [6]as a rectangular matrix A (row×column = r×c) of 

logic cells. Three genes represent each cell: <input1><input2><gate type>,where <input1> and 

<input2> are one of the circuit inputs, if they are in the first column, or one of the previous outputs, if 

they are in other columns. The gate type is one of the elements adopted in the gate set. The chromosome 

is formed with as many triplets as the matrix size demands (e.g. triplets = 3×r×c). 

2.2. The Genetic Operators 

The initial population of circuits (strings) is generated at random. The search is then carried out among 

this population. The three different operators used are reproduction, crossover and mutation, as described 

in the sequel .In what concern the reproduction operator, the successive generations of new strings are 

reproduced on the basis of their fitness function. In this case, it is used a tournament selection to select the 

strings from the old population, up to the new population. For the crossover operator, the strings in the 

new population are grouped together into pairs at random. Single point crossover is then performed 

among pairs. The crossover point is only allowed between cells to maintain the chromosome integrity. 

The mutation operator changes the characteristics of a given cell in the matrix. Therefore, it modifies the 

gate type and the two inputs, meaning that a completely new cell can appear in the chromosome. 

Moreover, it is applied an elitist algorithm and, consequently, the best solutions are always kept for the 

next generation. To run the GA we have to define the number of individuals to create the initial 

population P. This population is always the same size across the generations, until the solution is reached. 

The crossover rate CR represents the percentage of the population P that reproduces in each generation. 

Like-wise, the mutation rate MR is the percentage of the population P that can mutate in each generation. 
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2.3. THE FITNESS FUNCTION 

The calculation of the fitness function F in Eq. (1) has two parts, f1 and f2, where f1 measures the 

functionality and f2 measures the simplicity. In a first phase, we compare the output Y produced by the 

GA-generated circuit with the required values YR, according with the truth table, on a bit-per-bit basis. By 

other words, f1 is incremented by one for each correct bit of the output until f1 reaches the maximum 

value f10 that occurs when we have a functional circuit. Once the circuit is functional, in a Second phase, 

the algorithm tries to generate circuits with the least number of gates. This means that the resulting circuit 

must have as much genes gate type ≡ wire as possible. Therefore, the index f2, that measures the 

simplicity (the number of null operations), is increased by one (zero) for each wire (gate) of the generated 

circuit, yielding: 

• First phase, circuit functionality: 
 f10 = 2

ni
×no............................................ (1a) 

 f11 = f11 + 1, 

 if {bit i of  Y} = {bit i of YR} 

 i = 1,..., f10.............................................. (1b) 

 f1 = f11 − δ , 

 if errori ≠ errori−1, i = 1,..., f10……….... (1c) 

 (When measuring discontinuity) 

• Second phase, circuit simplicity: 

             f2 = f2 +1, if gate type = wire.............................. (1d) 

                  f1, F < f10 

             F =          f1 + f2, F ≥ f10……………………........ (1e) 

where i = 1,..., f10, ni and no represent the number of 

inputs and outputs of the circuit. 

3. THE MEMETIC ALGORITHM 

This section describes the MA. MAs are inspired by models of adaptation in natural systems that combine 

evolutionary adaptation of populations of individuals with individual learning within a lifetime [10]. As it 

is known, MAs are Meta heuristics that take advantage of the evolutionary operators in determining 

interesting regions of the search space. Moreover, MAs adopt a local search that rapidly finds good 

solutions in a small region of the search space [11]. Additionally, MAs are inspired by Richard Dawkins’ 

concept of a meme, which represents a unit of cultural evolution that can exhibit local refinement [12]. 

The proposed MA includes a GA and a local search algorithm, where the GA corresponds to the 

algorithm implemented in first stage of development. Over the last decade, MAs have relied on the use of 

a variety of different methods as the local improvement procedure. Some recent studies on the choice of 

local search method employed have shown that this choice significantly affects the efficiency of problem 

searches [13].  

The local search method investigates a small area around a solution and adopts the best-found solution. 

By other words, the procedure tries to find a fitter solution in the neighborhood of the current solution. If 

the algorithm finds a better solution, then the new solution replaces the current solution, and the 

neighborhood restarts. Local search methods are iterative algorithms that seek to enhance the solution by 

stepwise improvements. The simplest form of local search attempts to swap elements in combinatorial 

optimization problems. In our case, it is implemented a gate type local search (GTLS) algorithm as shown 

in Fig. 1. 

4. THE PARTICLE SWARM OPTIMIZATION 

Particle Swarm Optimization (PSO) is a recently proposed algorithm by James Kennedy and R. C. 

Eberhart. in 1995, motivated by social behavior of organisms such as bird flocking and fish schooling.  
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Fig. 1. The local search algorithm. 

 

 PSO algorithm is not only a tool for optimization, but also a tool for representing sociocognition of 

human and artificial agents, based on principles of social psychology [14]. Some scientists suggest that 

knowledge is optimized by social interaction and thinking is not only private but also interpersonal. PSO 

as an optimization tool, provides a population-based search procedure in which individuals called 

particles change their position (state) with time. In a PSO system, particles fly around in a 

multidimensional search space. During flight, each particle adjusts its position according to its own 

experience, and according to the experience of a neighboring particle, making use of the best position 

encountered by itself and its neighbor. Thus, as in modern GAs and MAs, a PSO system combines local 

search methods with global search methods, attempting to balance exploration and exploitation [15]. 

4.1. PSO Parameters 

In the PSO, instead of using genetic operators, as in the case of GAs, each particle (individual) adjusts its 

flying according with its own and its companion’s experiences. Each particle is treated as a point in a D-

dimensional space and is manipulated as described below in the original PSO algorithm: 

vid = vid +c1 rand()(pid −xid)+c2 rand()(pgd −xid)……….............(2) 

 

xid = xid +vid .............................................................(3) 

Where c1 and c2 are positive constants and rand() is a random function in the range [0,1], Xi =(xi1, 

xi2,...,xiD) represents the ith particle, Pi =(pi1, pi2,..., piD) is the best previous position (the position giving 

the best fitness value) of the particle, the symbol g represents the index of the best particle among all 

particles in the population, and Vi =(vi1, vi2,...,viD) is the rate of the position change (velocity) for particle i. 

Expression (2) represents the flying trajectory of a population of particles. Eq. (2) describes how the 

velocity is dynamically updated and Eq. (3) the position update of the “flying” particles. Eq. (2) is divided 

in three parts, namely the momentum, the cognitive and the social parts. In the first part the velocity 

cannot be changed abruptly: it is adjusted based on the current velocity. The second part represents the 

learning from its own flying experience. The third part consists on the learning group flying experience 

[15, 16]. 

The initial velocity of each particle is initialized with zero. The velocities of the following generations are 

calculated applying Eq. (2) and the new positions result from using Eq. (3). In this way, each potential 

solution, called particle, flies through the problem space. For each gene is calculated the corresponding 

velocity. Therefore, the new positions are as many as the number of genes in the chromosome. If the new 

values of the input genes result out of range, then a re-insertion function is used. If the calculated gate 

gene is not allowed a new valid one is generated at random. These particles then have memory and each 

one keeps information of its previous best position (pbest) and its corresponding fitness. The swarm has 

the gbest of all the particles and the particle with the greatest fitness is called the global best (gbest). The 

basic concept of the PSO technique lies in accelerating each particle towards its pbest and gbest locations 

with a random weighted acceleration. However, in our case we also use a kind of mutation operator that 

For all population 

For the entire chromosome 

Substitute de gene gate type with a neighbor 

If the new solution has better fitness function 

New solution replaces old solution 

End for 

End 
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introduces a new cell in 10% of the population. This mutation operator changes the characteristics of a 

given cell in the matrix. Therefore, the mutation modifies the gate type and the two inputs, meaning that a 

completely new cell can appear in the chromosome. To run the PSO we have also to define the number P 

of individuals to create the initial population of particles. This population is always the same size across 

the generations, until reaching the solution. 

5. COMPUTATIONAL RESULTS 

This section presents the computational results when applying, firstly the evaluation of the fitness 

function without the error discontinuity measure and secondly using the fitness function with the error 

discontinuity measure. Due to the stochastic nature of the EAs, in order to evaluate its performance, for 

each gate set we perform 20 simulations. The best gate set is the one that requires the smaller average 

number of generations Av(N) and the smaller standard deviation S(N) to reach the solution. 

5.1. Using the Fitness without Discontinuity Measure 
This subsection shows the implementation of four different combinational logic circuits, namely, a 2-to-1 

multiplexer (M2−1), a one-bit full adder (FA1),  

      
   1       2 

         
   3       4 
 

Fig. 2. Log[S(N)] versus Log[Av(N)]for the M2−1,  the FA1,the FS1 and the PC4 circuits with  P={100, 500, 1000,    

         3000} and δ = 0. 

a one-bit full subtractor (FS1) and a four-bit parity checker (PC4), using the GA, the MA and the PSO 

algorithms, using the fitness function described above, without the discontinuity error measure, that is 

with δ = 0. 

The first case study is the M2−1 circuit, with a truth table with three inputs {S0,I1,I0} and one output {O}. 

The matrix has a size of r×c = 3×3 and the length of each string representing a circuit (i.e., the 

chromosome length) is CL=27. Since the 2-to-1 multiplexer has ni=3 and no = 1, it results f10 = 8and F ≥ 

12. 

The second case study is the FA1 circuit, with a truth table with three inputs {A, B, Cin} and two outputs 

{S, Cout }. In this case, the matrix has a size of r×c = 3×3, and the chromosome length is CL = 27. Since 

the one-bit full adder has ni = 3 and no = 2, it results f10 = 16 and F ≥ 20. 

The third case study is a FS1 circuit, with a truth table with three inputs {A, B, Bin} and two outputs {S, 

Bout }. In this case, the matrix has a size of  r ×c = 3×3, and the chromosome length is CL = 27. Since the 

one-bit full adder has ni = 3 and no = 2, it results f10 = 16 and F ≥ 20. 
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The fourth case study consists on the PC4 circuit, which has four inputs {A3,A2,A1,A0} and one output 

{O}. The size of the matrix is r×c = 4×4 and the chromosome length is CL=48. In this case ni=4and no=1, 

resulting f10 = 16 and F ≥ 24. 

Figure 2 presents the results obtained in terms of Log[S(N)] versus Log[Av(N)] for the M2−1, the 

FA1,the FS1 and the PC4 circuits and P ={100, 500, 1000,3000} with δ = 0. 

The points in the space {Log[Av(N)], Log[S(N)]} are Approximated by a bi-dimensional Gaussian 

probability distribution. The ellipses depicted in the charts represent the corresponding contour plots. 

It is obvious that the MA algorithm reveals a better performance for all the combinational circuits and that 

both Av(N) and S(N) vary inversely with P. The GA and the PSO algorithms present similar results in 

particular for the M2−1andthe PC4 circuits. For the FA1 and the FS1 the PSO is less sensitive to P then 

the GA. 

Figure 3 shows Log[S(N)] versus Log[Av(N)] with P ={100, 500, 1000, 3000} for the GA, the MA and 

the PSO algorithms, with δ = 0. 

Analyzing the charts is possible to classify the complexity of the combinational logic circuits in the 

perspective of each evolutionary algorithm. For the three algorithms, the sequence of increasing circuit 

complexity becomes {PC4, M2−1, FA1, FS1}. In the PSO algorithm, the circuit complexity is clearly 

divided in two zones, namely the {FS1, FA1} and the {M2-1, PC4} zones. 

5.2. Using the Fitness with Discontinuity Measure 

The experiments of this subsection consist on running the PSO algorithm to generate the one-bit full 

adder (FA1) using the fitness scheme described in Eq. (1). The circuit is generated with the gate sets 

presented in Table 1 and P = 3000, w = 0.5, c1 = 1.5and c2 = 2. 

Figure 4 depict the average number of generations Av(N) and the standard deviation of the number of 

generations S(N) to achieve the solution versus δ for the PSO algorithm, the circuit {FA1} and the gate 

sets {2, 3, 4, 6}. The results reveal that Gset 3 presents a superior performance to the other Gsets, for all 

values of δ .Moreover, analyzing the influence of δ we conclude that the PSO response is better mostly in 

the region δ ≈ 0.5 for the arithmetic circuit and for all gate sets. 
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Fig. 3. Log[S(N)] versus Log[Av(N)]for P ={100, 500,1000, 3000} for the GA, the MA and the PSO algorithms,  

            with δ = 0. 

 

 
Fig. 4. Average number of generations Av(N) and Standard deviation of the number of generations S(N) to 

achieve a solution for the FA1 circuit versus δ ∈ [0,1], with Gsets {6,4, 3, 2}. 
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